

APPENDIX A

POTHOLE-RIVER NETWORKED
WATERSHED MODEL (PRINET)

A-1. Technical Model Description
A-2. PRINET Source Code

APPENDIX A-1

Technical Model Description

 A-1

A. POTHOLE-RIVER NETWORKED WATERSHED MODEL

This appendix contains an overview of the Pothole-River Networked Watershed Model
(PRINET), the model that was used to simulate runoff in the Devils Lake basin. The chapter
details the geometric inputs to the model, and how those inputs were modified in certain cases.
Then the structure of the model tables is explained, as is the generation of restoration scenarios.

Other inputs to the model and their structure are also explained. These inputs include future
climate sequences, precipitation and snowmelt data, evaporation data, and the use of lakes in the
model. The model outputs and their structure are also covered in detail. Finally, a flowchart
together with some notes is presented. These show how the model performs its computations.

A.1. MODEL OVERVIEW

Pothole-River Networked Watershed Model (PRINET) is a hydrologic model that utilizes
topographic and climatic information to simulate a long-term process (generally from 20 to 50
years) of rainfall, evaporation, and water storage for a terrain with a substantial number of
depressions (or potholes). It was designed to model in the Devils Lake watershed the impact of
depressions on runoff. PRINET could conceivably be applied to another watershed if the
topographic and climatic information were available.

The PRINET application was written in Microsoft Visual Basic 6.0 (Visual Basic For
Applications), inside a Microsoft Access database. Microsoft Access 2000 is required to run the
application.

There are two basic types of simulations that were computed: (1) calibration simulations (labeled
COMP), and (2) future simulation climate sequences (labeled 001 through 010, and WET). The
documentation in this chapter applies to both types of simulations.

A.1.1. Calibration Simulations

Calibration simulations were used to set each subwatershed’s parameters (such as infiltration rate
and the evapotranspiration multiplier) to attempt to match the physical parameters at geographic
locations. These physical parameters were deduced on the basis of values recommended for use
by other studies, texts, and reports, and by PRINET’s predicted flows when compared to
observed historical streamflows.

A.1.2. Future Simulations

Once the physical parameters were calibrated, these parameters were used to predict future
runoffs in the Devils Lake watershed. A set of climatic future conditions was input and PRINET
was used to predict future runoff values. Furthermore, because PRINET uses geographic inputs,
it was able to predict the effects of changes in these geographic inputs on future runoff values.

 A-2

A.2. INPUT DATA

The inputs to PRINET are the attribute tables (database tables which provide geographic
information) of themes developed in ArcView and HEC-GeoHMS (HEC-GeoHMS User’s
Manual, July 2000). The naming conventions for the tables are as follows:

• <SUBWATERSHED> is replaced by the name of the subwatershed being modeled, for
example EDMORE or HURRLAKE

• <SEQ> is replaced by the climate sequence: 001, 002, 003, 004, 005, 006, 007, 008, 009,
010, or WET.

• <RESTSCENARIO> is replaced by the letter that indicates the restoration scenario: A, B,
C, D or E.

For example,

 OUTPUT_<SUBWATERSHED>_<SEQ>_<RESTSCENARIO>

Would represent tables such as

OUTPUT_EDMORE_003_A

or

OUTPUT_STARKWEATHER_WET_E.

In the following sections, a table name is provided as the section heading. The table’s field
names and their descriptions are list under each table name. Some tables in the database may
have fields that are not listed. These possible additional fields were not used to develop the
PRINET models. The ArcView themes from which these tables were extracted have the same
name as the tables in the database, but without the IMP_ prefix.

Models were created by subwatershed (six subwatersheds were modeled). A total of five tables
imported from ArcView into Microsoft Access were needed to create each subwatershed model.
In addition, one other table was required for each restoration scenario for each subwatershed;
however, this table was not imported from ArcView but was created by PRINET.

The watershed delineation routines in HEC-GeoHMS were used to develop a “River” theme and
a “Watershed” theme—these are the names HEC-GeoHMS assigns to them; these themes were
renamed to uniquely identify each subwatershed modeled.

IMP_<SUBWATERSHED>_WSHEDS

This is the attribute table from the “Watershed” theme created by HEC-GeoHMS. Each table
corresponds to one subwatershed model. Six different subwatersheds were delineated:
Comstock, Hurricane Lake, Mauvais 6100, Mauvais, Edmore, and Starkweather.

 A-3

Each watershed is divided into numerous subbasins. The watersheds were delineated to provide
an average subbasin area of 0.3 square miles. The following figure illustrates the
IMP_COMSTOCK_WSHEDS subwatershed theme (the smallest of the subwatersheds modeled,
COMSTOCK has 257 subbasins):

Figure A-1. Comstock subwatershed divided into individual subbasins by HEC-GeoHMS.

The attribute table’s fields required by PRINET are:

• WSHID (Number): The subbasin ID for the subbasin, as determined by HEC-GeoHMS.

• AREA_M2 (Number): The area in square meters of the subbasin.

• Region (Number): The region number, which also appears in the Regimes table for the
subwatershed model. PRINET allows the user to set different parameters for the different
subbasins. These regions are set in ArcView on the basis of geographic location, and the
IMP_<SUBWATERSHED>_WSHEDS table contains these region numbers for use in
the program. Region numbering must begin at 1 and be consecutive. For example, a
model with only one region would have all subbasins set at Region = 1. A model with
three regions would use Region numbers 1, 2 and 3.

• PrecipGage (Text): The name of the precipitation gage used for this subbasin. The table
PrecipGages provides the relationship between the precipitation gage names and the
tables in which the precipitation gage information is stored.

 A-4

IMP_<SUBWATERSHED>_RIVER

This is the attribute table from the RIVER theme created by HEC-GeoHMS. The river theme is
a network theme of river segments, as illustrated in the following figure.

Figure A-2. Networked river segments developed by HEC-GeoHMS delineation

Each river segment corresponds to exactly one subbasin. The RIVER table contains the
information regarding the ordering of the rivers (and therefore the ordering of the subbasins).
Each field in the RIVER table gives the attributes from one river segment.

The RIVER table has numerous fields; however, only the following are used by PRINET:

• FROM_NODE (Number): The upstream node number.

• TO_NODE (Number): The downstream node number.

• WSHID (Number): The subbasin ID from HEC-GeoHMS in which the river segment is
contained. Each subbasin has exactly one river segment assigned to it.

• RIVID (Number): The river ID for the river segment, it is the same as the WSHID value;
that is each river segment has the same ID number as the subwatershed it is contained in.

 A-5

IMP_<SUBWATERSHED>_DEPTABLE_<RESTSCENARIO>

This table contains a list of all the depressions in the subwatershed and their characteristics. It
contains the following fields:

• POLYID (Number): An integer that is unique to each depression.

• DEPTH_M (Number): The average depth in meters of the depression.

• AREA_M2 (Number): The surface area of the depression in square meters.

• DEPTYPE123 (Number): The depression classification: 1 if intact, 2 if drained.

• VOLM3 (Number): The total volume in cubic meters of the depression.

• INTERRIV (Boolean): True (= -1) if the depressions intersects the river network
delineated by HEC-GeoHMS, False (= 0) if the depression does not intersect the river
network delineated by HEC-GeoHMS. The following figure illustrates how river
intersection was determined:

Figure A-3. Representative area showing depressions and their intersection with the river

theme delineated by HEC-GeoHMS.

 A-6

Following is an example of one record of a typical DEPTABLE, as it appears after it is imported
from ArcView:

POLYID DEPTH_M AREA_M2 DEPTYPE123 VOLM3 INTERRIV
56676 0.2742 3012.7 1 826.0823 FALSE

The restoration scenario tables, which will be described later, are named similarly to this table,
but have a suffix of “B,” “C,” “D,” or “E” instead of “A.” These tables are not imported from
ArcView but are created by PRINET. Furthermore, during PRINET’s creation of these
additional tables, 3 additional fields are added to the IMP_<SUBWATERSHED>-
_DEPTABLE_A table. These three additional fields will be described later, in Section A.2.3,
“Creation of Restoration Scenarios from a Model”.

IMP_<SUBWATERSHED>_PPOINTLOCATIONS

This table is the attribute table of an intersection between the pour point location of each
depression and the subwatershed theme. It provides the location of each depression’s pour point
by subbasin. It contains the following fields:

• POLYID (Number): An integer, which is unique to each depression.

• WSHID (Number): The subbasin ID of the subbasin delineated by HEC-GeoHMS.

The pour points themselves were generated by the following process:

(1) The small stream grid (as generated by HEC-GeoHMS) for the subwatershed
model was multiplied by the flow accumulation grid. This provided a grid that
looked like the small stream grid, but whose grid values were the flow
accumulation values.

(2) This grid was then converted to a polygon theme, and the polygon theme was
converted to a point theme, using the centers of each polygon. The result was a
point theme with flow accumulation values as the attributes.

(3) The point theme was then intersected with the depression theme, which provided
a theme with an attribute table showing the location of each point by the
depression POLYID. For each depression, the point inside the depression with
the maximum flow accumulation was selected, and called the pour point of the
polygon. However, many polygons, primarily the small ones that were off the
river network, did not intersect the small stream grid. In these cases, the centers
of the depression polygons were taken to be the pour points.

The following figure illustrates pour points for some sample depressions:

 A-7

Figure A-4. Representative area showing depressions and their pour points as defined based

on intersection with the small stream grid.

IMP_<SUBWATERSHED>_PPOINTWSHEDS

This is the attribute table from a theme that contains the contributing areas for each depression,
excluding the depressional surface area.

The ArcView theme from which this attribute table was extracted was developed by a multi-step
process. To the set of pour points (one point for each intact and drained depression— the
generation of these pour points was explained previously), the outlet point of the subwatershed
was added. Then, subbasins were delineated for each of the points. A script obtained from the
ESRI website (http://support.esri.com/) was used to accomplish this delineation (the script is
called wshed_point.ave, dated 25/Feb/2000, updated: 20/Apr/2000, by Fridjof Schmidt).

The result was a complete coverage of the subwatershed, with small subbasins delineated on
each of the pour points. This provided a contributing drainage area for each of the depressions.
The following figure, a detail from the Comstock subwatershed, illustrates the result.

 A-8

Figure A-5. Detail of Comstock subwatershed showing delineation of individual subbasins for
each depression pour point (in red).

Then, from this theme of small subbasins, the area where the depressions (both intact and
drained) themselves were located was cut out (removed) from the theme. The depressional area
was removed in order to provide contributing areas that were not overlapping the depressions
themselves.

The resulting theme resembles the overall subwatershed area, but with holes where the
depressions were located. Since the contributing areas for each depression may have been
broken up, multiple areas may appear for the same POLYID (the depression identifier) in the
attribute table. The following figure illustrates this theme for the Comstock subwatershed.

 A-9

Figure A-6. Detail of Comstock subwatershed showing delineation of individual subbasins

for each depression pour point, with depressions removed.

Therefore, the sum of all areas for each POLYID provides the contributing area for each
depression. The fields required by PRINET are:

• POLYID (Number): An integer, which is unique to each depression.

• AREA_M2 (Number): The surface area of the depression in square meters when the
depressions are full.

A.2.1. Adjustments to the input geometric data

For the six subwatersheds modeled, once the five tables were imported into the Microsoft Access
database, some tables were modified before the subwatershed model was generated. There were
two adjustments to the imported tables that were performed on some of the subwatersheds:

A.2.1.1. Changing Location of Depressions

Each depression is assigned to a subbasin based on the location of its pour point. It may be clear
by examination of the ArcView coverage of the depressions and the subbasins, that the location

 A-10

of the pour point of a depression does not best represent the subbasin to which that depression
should be assigned.

If this is the case, then in the IMP_<SUBWATERSHED>_PPOINTLOCATIONS table, the
assignments of depressions can be changed from one subbasin to another. As a generic example,
a few records of this table might look like this:

POLYID WSHID
22775 269
22784 242
22785 232
22786 256

Based on the geometry of the depression 22775, it might be logical to shift it from its current
assignment in Wshid 269, to another Wshid, say 270. The Wshid field would simply be
modified to the new Wshid number:

POLYID WSHID
22775 270
22784 242
22785 232
22786 256

The Wshid number corresponds to the numbers that HEC-GeoHMS assigns to each of the
subbasins it creates. The new Wshid number assigned to any polygon should be an actual
subbasin listed in the IMP_<SUBWATERSHED>_WSHEDS table.

A.2.1.2. Re-sequencing rivers

It may be apparent from the aerial photographs that HEC-GeoHMS did not correctly sequence
the rivers. For example, in the Edmore subbasin, the following was the original sequencing for
River segments 1281 and 1304:

ARCID GRID_CODE FROM_NODE TO_NODE WSHID RIVID LENGTH RIV_LENGTH
1278 1281 1277 1297 1281 1281 670 669.8
1294 1304 1306 1297 1304 1304 382 381.6

 A-11

Figure A-7. Example of river resequencing in Edmore subbasin

But from the aerial photographs, it can be seen the HEC-GeoHMS has not correctly sequenced
the rivers (this is certainly due to the Digital Elevation Model, not to any flaw in HEC-
GeoHMS). The rivers should flow south, not west. So their “TO_NODE” values were changed
as follows:

ARCID GRID_CODE FROM_NODE TO_NODE WSHID RIVID LENGTH RIV_LENGTH
1278 1281 1277 1369 1281 1281 670 669.8
1294 1304 1306 1369 1304 1304 382 381.6

A.2.2. Creation of a Model From Input Tables

Using the five input tables described in the previous section, the “Create New Model From
ArcView Tables” button on the program’s main screen (the RunSimul form) creates a set of
tables for the subwatershed model: a subwatershed table, a regime table and a river table.

 A-12

The tables generated and the naming conventions are described below, where
<SUBWATERSHED> is replaced by the name of the subwatershed being modeled. The fields
and their definitions are listed in each table name. Any fields found in the tables that are not on
the list are not required by PRINET.

MODEL_<SUBWATERSHED>_<RESTSCENARIO>_WSHEDS

Five fields from this table can be modified by the user after PRINET creates the table:
InitWaterM3, InputStreamTable, LakeID, ExtraInflowID, and ExtraOutflowID. All other fields
should be left with their original values.

• SubBSeq (Number): The subbasin sequence number. This is the subwatershed model’s
unique identifier for each subbasin. The subbasins are numbered so that subbasins
always have lower subbasin sequence numbers than the downstream subbasins. The
sequencing information for the subbasins is extracted from the imported river table
(IMP_<SUBWATERSHED>_RIVER), which has the from and to nodes for each
subbasin.

• WShid (Number): The subbasin ID from HEC-GeoHMS. This WShid identifier is used
during the creation of the WSHED table from the imported ArcView tables (prefixed
IMP), but once the subwatershed model’s WSHED table is generated, PRINET does not
use the WShid field. It can be used by the user to provide a relationship between the
HEC-GeoHMS WShid and the SubBSeq numbers.

• DSSubBSeq (Number): The subbasin sequence number of the subbasin downstream of
the SubBSeq subbasin.

• PrecipGage (Text): The name of the precipitation gage used for this subbasin. The table
PrecipGages provides the relationship between the precipitation gage names and the
tables in which the precipitation gage information is stored.

• Region (Number): The region number, which also appears in the Regimes table for the
subwatershed model. PRINET allows the user to set different parameters for the different
subbasins. These regions are set in ArcView on the basis of geographic location, and the
IMP_<SUBWATERSHED>_WSHEDS table contains these region numbers for use in
the program. Region numbering must begin at 1 and be consecutive. For example, a
model with only one region would have all subbasins set at Region = 1. A model with
three regions would use Region numbers 1, 2 and 3.

• InitWaterM3 (Number): The initial amount of water in cubic meters in the depressions at
the start of the simulation. The program proportions this water between the on-river and
off-river depressions at the start of the simulation. The amount proportioned is based on
the relative volume of the on-river and off-river depressions. If the on-river depressions
had 75% of the depressional volume then the program would start with them containing
75% of the initial water specified in this field; the balance would go to the off-river
depressions. The default value is 0: different values can be added by the user.

 A-13

• InputStreamTable (Text): A table that provides source flows to the subwatershed at
specific subbasins. Generally, this will be the output from another model. Only the
subwatershed model name from which the flows will be obtained needs to be specified.
For example, if “HURRLAKE” is specified in this field, then the simulation will look for
a table called OUTPUT_HURRLAKE_COMP_A, in the case of the calibration run
(COMP) and restoration scenario A. These input tables require two fields: Date, which is
the calendar day, and CMPD, which is the cubic meters of flow per day. All flows from
this input table will be added to the subbasin record where the InputStreamTable is
specified. The default for this field is null; any value for this field is manually added by
the user.

• LakeID (Number): The ID number of any lake that exists at this subbasin. The existence
of a lake at a subbasin causes the program to use the storage-outflow relationships
specified in the Lakes table instead of using the normal algorithm to calculate the outflow
of the on-river depressions. The default for this field is null; any value for this field is
manually added by the user.

• ExtraInflowID (Text): The name of a table to which PRINET should write the inflows to
a subbasin. The table name will be prefixed by “INFLOW” and suffixed by the
simulation run and restoration scenario. For example, if the word “GAGENAME” was
entered in this field for a particular subbasin, the table
INFLOW_GAGENAME_<SEQ>_<RESTSCENARIO> would be created during the
simulation and it would contain the flows into the subbasin on a daily basis. This table
has two fields, Date and CMPD (the flow in cubic meters). A maximum of 25 inflow
tables may be specified. The default for this field is null; any value for this field is
manually added by the user.

• ExtraOutflowID (Text): This is similar to the previous field, except it contains the name
of a table to which PRINET should write the outflows from the subbasin. The table name
will be prefixed by OUTFLOW and suffixed by the simulation run and restoration
scenario. For example, if the word “GAGENAME” was entered in this field for a
particular subbasin, the table OUTFLOW_GAGENAME_COMP_A would be created
during the simulation, it would contain the flows into the subbasin on a daily basis. This
table has two fields, Date and CMPD (the flow in cubic meters). A maximum of 25
outflow tables may be specified. The default for this field is null; any value for this field
is manually added by the user.

• WSAreaM2NonDep (Number): The area of the subbasin, not including intact
depressional surface area, in square meters. This is calculated by adding all the
contributing areas of the depressions whose pour points are located in the subbasin.
These contributing areas do not include the area of intact depressions but do include the
surface area of drained depressions.

• DepVolM3 (Number): The total storage volume of all intact depressions in the subbasin,
in cubic meters. A depression is defined as being in a subbasin if its pour point is inside
the subbasin.

 A-14

• DepAreaM2 (Number): The total surface area of intact depressions in the subbasin, in
square meters.

• WSAreaNonDepOnRiverM2 (Number): This is analogous to WSAreaM2NonDep, but it
only has the contributing areas for those depressions (both intact and drained) that
intersect the HEC-GeoHMS river network.

• DepVolOnRiverM3 (Number): This is analogous to DepVolM3, but it only includes the
volumes of those intact depressions that intersect the river network.

• DepAreaOnRiverM2 (Number): This is analogous to DepAreaM2, but it only includes
the surface area of those intact depressions that intersect the river network.

• WSAreaNonDepOffRiverM2 (Number): Analogous to WSAreaNonDepOnRiverM2, but
this is for depressions that do not intersect the river network.

• DepVolOffRiverM3 (Number): Analogous to DepVolOnRiverM2, but this is for
depressions that do not intersect the river network.

• DepAreaOffRiverM2 (Number): Analogous to DepAreaOnRiverM2, but this is for
depressions that do not intersect the river network.

• NumDeps (Number): The total number of depressions assigned to this subbasin.

• NumDepsOnRiver (Number): The total number of depressions assigned to this subbasin
that intersect the river network.

• NumDepsOffRiver (Number): The total number of depressions assigned to this subbasin
that do not intersect the river network.

The following shows one record from this table from the MAUVAIS model. For this record,
Irvine Lake was assigned to the subbasin, (LakeID = 6 is for Irvine Lake), and inflow and
outflow tables were specified in the ExtraInflowID and ExtraOutflowID fields. This will cause
tables to be created during the simulation runs that give the daily inflows and outflows of this
subbasin. The rows shown all belong to the same record.

 A-15

SubBSeq WShid DSSubBSeq PrecipGage RegionInitWaterM3InputStreamTable
2888 2754 2898 CHURCHF 4 0

LakeID ExtraInflowID ExtraOutflowIDWSAreaM2NonDepDepVolM3DepAreaM2

6 IRVINE IRVINE 349141.2 16566610 14282790

WSAreaNonDepOnRiverM2 DepVolOnRiverM3DepAreaOnRiverM2

349141.2 16566610 14282790

WSAreaNonDepOffRiverM2 DepVolOffRiverM3DepAreaOffRiverM2

0 0 0

NumDeps NumDepsOnRiver NumDepsOffRiver

1 1 0

MODEL_<SUBWATERSHED>_REGIME

The fields from this table can be modified by the user to reflect the subwatershed model’s
desired parameters, with the following restrictions: (1) there must be exactly as many Regions
specified in the table as appear in the IMP_<SUBWATERSHED>_<RESTSCENARIO>-
_WSHEDS table’s Region field; (2) the region numbering must begin with 1 and be consecutive
up to the number of regions present, and; (3) there must be exactly two RegimeID’s for each
Regime, with values of 1 and 2.

• Region (Number): This is the geographic region number, which corresponds to the
Regions assigned to each subbasin in IMP_<SUBWATERSHED>_WSHEDS table, and
in the MODEL_<SUBWATERSHED>_<RESTSCENARIO> _WSHEDS table.

• RegimeID (Number): There should be two RegimeID records for each region. The first
record should have RegimeID = 1 and corresponds to the low infiltration/winter regime.
The second record should have RegimeID = 2 and corresponds to the high
infiltration/summer regime.

• Name (Text): The name of the regime, not used by the program but for the convenience
of the user. “Low” is used for RegimeID = 1 and “High” for RegimeID = 2.

• EntryThresholdF (Number): This is the threshold temperature which determines the
transition from one regime to the other. Each precipitation gage, for each day of record,
is assigned to either Regime 1 (cold season) or Regime 2 (warm season). Subbasins
assigned to these gages use the corresponding assignments of their precipitation gage to
determine the set of parameters (i.e. maximum infiltration rate, percolation rate) used for
a particular day. Seasons (i.e., high and low infiltration regimes) are calculated for each
Precipitation Gage record used in the subwatershed model. These gages have a
temperature record. When the 30-day moving average of the average daily temperature
(the average of the high and low temperatures recorded) crosses the EntryThresholdF

 A-16

value, then the Regime is switched on that date for that gage. For example, suppose the
entry threshold for Regime 1 is set at 35 degrees F. If for a particular gage, on 11/5/1993,
the moving average of the temperature dropped below 35 degrees F for the first time that
winter, then 11/5/1993 would be classified as Regime 1, while the previous day,
11/4/1993, would be in Regime 2. All subbasins assigned to that gage would use the
regimes that were calculated for that gage. As an example of transitioning into Regime 2,
suppose that the EntryThresholdF for Regime 2 was set at 45. When the 30-day moving
average of temperature for a gage first exceeded 45 degrees, then from that day forward
the Regime would be set at 2 for that particular gage. However, there is smoothing
function which is used in the final days of each low infiltration Regime (Regime = 1) to
smooth the transition to the higher infiltration (Regime = 2) regime. This smoothing
function affects the infiltration only, and prevents it from changing suddenly from one
day to the next. The infiltration begins to rise from the Regime = 1 value toward the
Regime =2 value once the 30-day moving average temperature goes above 32 degrees.

• InfilMPD (Number): The maximum potential infiltration in meters per day. During the
simulation, actual potential infiltration is reduced with increasing saturation of the soil.

• PercMPD (Number): The potential percolation in meters per day. Percolation only takes
place if the soil capacity is less than upper zone depth (another parameter set by Regime,
defined later). The soil capacity is defined as the soil “dryness” depth, it is the amount of
water the soil can still absorb before becoming completely saturated. It changes daily
and equals the potential soil capacity minus the soil moisture. So percolation only takes
place when the soil is saturated enough.

• ETCoef (Number): The dimensionless evapotranspiration coefficient. The actual
evapotranspiration rate is reduced with increasing soil capacity (dryness). The ET
coefficient should be between 0 and 1.

• UpperZoneM (Number): A depth, in meters, where if the soil capacity is less than this
amount, then percolation is allowed to take place. Percolation only takes place when the
soil capacity is low, that is, the soil saturation is high.

• PotentialSoilCapM (Number): The total capacity of the soil to hold water, in meters of
water.

• InitialSoilCapM (Number): The initial soil capacity, in meters, to apply at the start of
each simulation.

• NextDayFractionalFlow (Number): A dimensionless attenuation factor which should be
less than 1 and greater than or equal to zero. PRINET calculates total potential outflow
from a subbasin for a particular day. A fraction of the flow indicated in this field is
lagged and appears the next day at the downstream subbasin. The rest of the outflow
fraction (1 – NextDayFractionalFlow), appears the same day at the downstream subbasin.
This provides each subbasin with a 2-step hydrograph, which can be used to attenuate
flows to match the shapes of observed streamflows.

 A-17

A typical table would appear as follows for a model with 3 Regimes (the table is broken in two
due to space limitations, each of the rows of the 2nd part correspond to the rows in the first part):

Region RegimeID Name EntryThresholdF InfilMPD PercMPD ETCoef UpperZoneM
1 1 Low 35 0.02 0 0.76 0.01
2 1 Low 35 0.008 0 0.76 0.01
3 1 Low 35 0.008 0 0.76 0.01
1 2 High 45 0.36 0.005 0.95 0.03
2 2 High 45 0.16 0.005 0.83 0.03
3 2 High 45 0.34 0.005 0.95 0.03

PotentialSoilCapM InitialSoilCapM NextDayFractionalFlow

0.33 0.23 0.1
0.33 0.23 0.1
0.33 0.23 0.1
0.33 0.23 0.1
0.33 0.23 0.1
0.33 0.23 0.1

MODEL_<SUBWATERSHED>_RIVER

This table is used during the generation of the subwatershed model by PRINET. Several fields
are added by PRINET to the imported river table (IMP_<SUBWATERSHED>_RIVER) to
create the subwatershed model river table (MODEL_<SUBWATERSHED>_RIVER). PRINET
uses these added fields to store values which are then transferred into the (MODEL_-
<SUBWATERSHED>_<RESTSCENARIO>_WSHED) table. Once the subwatershed model is
created, PRINET does not use the MODEL_<SUBWATERSHED>_RIVER table but it remains
available should the user care to examine it.

In addition to all the fields contained in the subwatershed model’s RIVER table (described
previously under the heading IMP_<SUBWATERSHED>_RIVER), the following fields are
added:

• Layer (Number): For each subbasin, this is the sequential number for subbasins upstream
of the subwatershed’s outlet. The subbasin closest to the outlet has a layer number of 1,
those immediately upstream have a layer number of 2. Those subbasins most upstream
will have the highest number. This layer sequencing is used only to develop the
SubBSeq and DSSubSeq numbers, which are described below.

• SubBSeq (Number): Each subbasin in a subwatershed is assigned this unique identifier.
The SubBSeq numbers are assigned by sorting the subbasins first by reverse layer
number, so that those subbasins that are the most upstream are assigned the lowest
SubBSeq number. This numbering guarantees that a subbasin’s SubBSeq number cannot

 A-18

be higher than any downstream subbasin’s SubBSeq. The subbasins most upstream have
the lowest SubBSeq number.

• DSSubSeq (Number): For each subbasin, this corresponds to the SubBSeq number of the
downstream subbasin. The most downstream subbasin has a DSSubBSeq number of 0,
which represents the outlet of the subwatershed.

• DistFromOutM (Number): This field is not used.

A.2.3. Creation of Restoration Scenarios from a Model

A restoration scenario is one in which a quantity of depressions which had been classified as
drained (which are assumed not to hold water) are converted to intact depressions (which are
assumed to hold water). These restoration scenarios are used in the future simulations to
estimate the impact of restoring drained depressions on future runoff.

Once a model was created from the input tables, the restoration scenarios for this model were
developed. This was accomplished by clicking the “Create All Restoration Scenarios” button on
the PRINET form. Note that because PRINET uses random numbers in the generation of these
restoration scenarios, that clicking “Create All Restoration Scenarios” will not create the same
restoration models when it is clicked a second time for the same subwatershed. This is described
in detail below.

Restoration scenarios involve the conversion of some drained (Deptype123 = 2) depressions into
intact (Deptype123 = 1) depressions. These are used so that re-running PRINET on the
subwatershed can indicate how the restoration scenarios affect the runoff.

Restoration scenarios were developed by assuming that all depressions greater than or equal to
0.5 feet (0.1524 meters) of average depth constitute the group of restoration candidates. The
total depressional volume of this group is the total restoration volume.

All simulations started on 10/1/1978, with the original calibration geometry. When the
simulation date reached the restoration transition date (the date at which restoration of drained
depressions is assumed to be implemented) which was 10/1/2003, PRINET reads the parameters
from the MODEL table corresponding to the restoration being simulated (if not scenario A).
These parameters are used for all simulations from 10/1/2003 forward.

Each depression belonging to the group of restoration candidates was assigned a random
fractional number between 0 to 1 by PRINET. The depressions were sorted according to these
random numbers. Using this sort order, PRINET calculated the cumulative volume as a fraction
of the group total, and the cumulative area as a fraction of group total.

For example, the first few records of a group of restoration candidate might appear as follows
(this example is from IMP_EDMORE_DEPTABLE_A):

 A-19

POLYID DEPTYPE123 DEPTH_M AREA_M2 VOLM3 INTERRIV RandomNum RunningTotalFracVol RunningTotalFracArea

18841 2 0.5476 10247 5611.2572 FALSE 0.000077 0.000113268 0.000103462
27187 2 0.407 62341.5 25372.991 TRUE 0.000103 0.000625444 0.000732914

39687 2 0.1752 50505.6 8848.5811 TRUE 0.000303 0.000804061 0.001242861

43664 2 0.4933 103317.3 50966.424 TRUE 0.002125 0.001832863 0.002286039

38532 2 0.2466 116337.9 28688.926 TRUE 0.002598 0.002411974 0.003460684

38847 2 0.4382 40467.9 17733.034 FALSE 0.002713 0.002769931 0.003869282

32410 2 0.3466 9991.2 3462.9499 FALSE 0.003188 0.002839834 0.003970161

The RandomNum field has the random numbers calculated by PRINET which have been
assigned to each depression which is a restoration candidate. In the table above, they are sorted
by this random number. The field RunningTotalFracVol gives the portion of the volume so far,
as a fraction of the total volume of all restoration candidates.

For this subwatershed (EDMORE), the total volume of the restoration candidate group (the total
of VOLM3 of all drained depressions, i.e., DepType123 = 2, with depth greater than or equal to
0.1524 meters) is 49,539,577.832 cubic meters (this value is not shown in the previous table).
The first restoration candidate has PolyID = 18841. It has a volume of 5611.2572 cubic meters,
so the RunningTotalFracVol = 5611.2572 / 49,539,577.832 = 0.000113268. The 2nd restoration
candidate has PolyID = 27187. It has a volume of 25372.991 cubic meters, so the
RunningTotalFracVol = (All previous depressional volume + current depression’s
volume)/(Total restoration volume) = (5611.2572 + 25372.991)/(49,539,577.832) =
0.000625444.

Similarly, the RunningTotalFracArea field provides a running total of the fractional area of the
depressions, as a fraction of the total area of the restoration candidate group.

Four levels of restoration are simulated for each model, as described in the following table:

Restoration Scenario Description

A The original model, as calibrated.

B 25% of the total restoration volume is
converted from drained to intact.

C 50 % of the total restoration volume is
converted from drained to intact.

D 75% of the total restoration volume is
converted from drained to intact.

E 100% of the total restoration volume is
converted from drained to intact (i.e., all
restoration candidates are converted from
drained to intact).

 A-20

The restoration scenarios are assigned by the running total fractional volumes calculated
previously. If the running total fractional volume is less than or equal to the fraction of
restoration for each restoration scenario, then those depressions are “restored” (changed from
drained to intact) for that restoration scenario. For example, for restoration scenario C, all
depressions whose running total fractional volume is less than or equal to 0.5 will be changed
from drained to intact for the C model. In the following table (from
IMP_EDMORE_DEPTABLE_A), PolyIDs 39999 and 45013 are changed to intact in the C
model because their running total fractional area is less than or equal to 0.5, but 48402 and
39988 are not changed.

POLYID DEPTYPE123 DEPTH_M AREA_M2 VOLM3 INTERRIV RandomNum RunningTotalFracVol RunningTotalFracArea

39999 2 0.168 2405.7 404.1576 FALSE 0.442525208 0.499649256 0.485442458
45013 2 0.225 1174 264.15 FALSE 0.442694128 0.499654588 0.485454311

48402 2 0.4151 59570.2 24727.59 FALSE 0.442749977 0.500153736 0.486055782

39988 2 0.3315 134254.5 44505.367 TRUE 0.443671823 0.501052116 0.487411328

The following shows a few records from IMP_EDMORE_DEPTABLE_C for the corresponding
records shown above, note how the 39999 and 45013 depressions were changed to DepType123
= 1 (intact):

POLYID DEPTH_M AREA_M2 DEPTYPE123 VOLM3 INTERRIV

39999 0.168 2405.7 1 404.1576 FALSE
45013 0.225 1174 1 264.15 FALSE

48402 0.4151 59570.2 2 24727.59 FALSE

39988 0.3315 134254.5 2 44505.367 TRUE

The IMP_<SUBWATERSHED>_DEPTABLE_B, IMP_<SUBWATERSHED>_DEPTABLE_-
C, IMP_<SUBWATERSHED>_DEPTABLE_D, and IMP_<SUBWATERSHED>-
_DEPTABLE_E TABLES are used by PRINET to develop the MODEL tables for the
corresponding restoration scenarios. For example, for the EDMORE subwatershed, the tables
MODEL_EDMORE_B, MODEL_EDMORE_C, MODEL_EDMORE_D and MODEL_-
EDMORE_E would be created. These B, C, D, E and tables are identical to the original
MODEL_EDMORE_A table except in the fields that pertain to areas and volumes.

These additional B through E models have the same lakes, inflow and outflow ID’s and initial
water volumes as the A model. In other words, all the user input parameters that are in the A
model WSHED table (MODEL_<SUBWATERSHED>_A_WSHEDS) are also copied to the B,
C, D and E versions of the MODEL table.

A.2.4. Other inputs used by the subwatershed models

There were numerous additional data sources used by PRINET to run the subwatershed model
calibrations / simulations:

 A-21

A.2.4.1. Future Simulation Sequences

For the purposes of future simulations (water year 2001 and beyond), 11 simulation climate
sequences were created. In each climate sequence, data from actual climatic years from 1980-
1999 was substituted into the years 2001-2020 for 10 of the climate sequences (these sequences
are labeled 001 through 010) and data from waters years 1993-1999 was substituted into the
years 2001-2035 for one climate sequence (the “WET” climate sequence).

The following table shows which actual climatic water years were used in each simulated water
year for each climatic sequence simulation:

Table A-1. Climatic Water Years Used in Each Simulated Water Year

CLIMATE SEQUENCE

Simulated
Water Year 001 002 003 004 005 006 007 008 009 010

2001 1981 1994 1998 1992 1980 1999 1986 1989 1982 1990
2002 1983 1999 1997 1995 1986 1989 1999 1989 1999 1988
2003 1991 1995 1982 1985 1983 1985 1994 1996 1996 1997
2004 1995 1986 1998 1995 1982 1991 1996 1982 1988 1997
2005 1985 1981 1984 1996 1997 1980 1999 1982 1989 1996
2006 1986 1981 1990 1986 1991 1992 1995 1991 1991 1994
2007 1997 1987 1999 1988 1994 1989 1983 1997 1995 1988
2008 1994 1992 1983 1995 1988 1995 1989 1982 1986 1984
2009 1999 1982 1986 1985 1987 1997 1986 1994 1992 1986
2010 1993 1985 1995 1998 1997 1980 1990 1991 1982 1988
2011 1998 1986 1989 1994 1998 1986 1987 1989 1997 1981
2012 1983 1986 1990 1982 1998 1991 1999 1987 1984 1987
2013 1980 1997 1994 1991 1986 1991 1983 1985 1994 1986
2014 1989 1989 1990 1991 1997 1984 1982 1995 1992 1985
2015 1983 1987 1989 1994 1993 1991 1987 1983 1997 1994
2016 1996 1994 1996 1994 1994 1989 1985 1982 1986 1987
2017 1994 1993 1987 1980 1992 1987 1996 1987 1990 1985
2018 1997 1995 1999 1986 1994 1999 1995 1988 1992 1999
2019 1998 1998 1986 1984 1982 1989 1986 1984 1981 1996
2020 1986 1992 1991 1998 1998 1984 1989 1985 1987 1985

For the “WET” simulation, the climatic water years from 1993-1999 are repeated. The sequence
is as follows:

 A-22

Table A-2 Climatic Water Years Used For WET Simulation

WET Climate Sequence
Simulated

Water Year
Climatic

Water Year
2001 1993
2002 1994
2003 1995
2004 1996
2005 1997
2006 1998
2007 1999
2008 1993
2009 1994
2010 1995
2011 1996
2012 1997
2013 1998
2014 1999
2015 1993
2016 1994
2017 1995
2018 1996
2019 1997
2020 1998
2021 1999
2022 1993
2023 1994
2024 1995
2025 1996
2026 1997
2027 1998
2028 1999
2029 1993
2030 1994
2031 1995
2032 1996
2033 1997
2034 1998
2035 1999

The actual substitution list used to relate the simulated water years to the climatic water years is
contained in the table SimulSeqs, in a different format. Here are a few sample records from that
table:

 A-23

Sequence SimWatYear ClimaticWatYear
001 2001 1981
001 2002 1983
001 2003 1991
001 2004 1995
001 2005 1985
001 2006 1986
001 2007 1997
001 2008 1994
001 2009 1999

Examples will illustrate how the substitution works. For sequence 001, simulated water year
2001 uses data from climatic water year 1981. This means that from 10/1/2000 through
9/30/2001 (water year 2001), simulation 001 will use climatic data from 10/1/1980 to 9/30/981
(water year 1981). The simulation date of 10/15/2000, for example, would use climatic data
from 10/15/1980. The simulation date of 4/25/2001 would use climatic data from 4/25/1981.

For this same 001 sequence, simulated water year 2002 uses climatic data from water year 1983.
So 10/1/2001 (the first day of water year 2002) would use climatic data from 10/1/1982 (the first
day of water year 1983).

All of this date substitution information is also contained in the precipitation tables, described in
the following section.

A.2.4.2. Precipitation and Snowmelt

Each subwatershed model has at least one precipitation gage table. Each subbasin in
MODEL_<SUBWATERSHED>_<RESTSCENARIO>_WSHEDS table is assigned to a certain
precipitation gage. For example, here are the first few fields from a couple of records (each
record corresponds to one subbasin) from the MODEL_MAUVAIS_A_WSHEDS table:

SubBSeq Wshid DSSubBSeq PrecipGage Region InitWaterM3InputStreamTable
675 359 690 ROLLA1 3 0
676 1296 697 CANDO1 4 0

For this example, SubBSeq = 675 has a precipitation gage of ROLLA1, while SubBSeq = 676
has the precipitation gage CANDO1 assigned to it. These identifiers, “ROLLA1” and
“CANDO1” refer to values found in the PrecipGage field in the PrecipGages table. The
PrecipGages table provides a relation between the identifier and the Access table where the
precipitation, temperature, and Snowmelt data for the gage are located.

Here is the “PrecipGages” table:

 A-24

PrecipGage TableName
BELCOURT PrecipAndTempBelcourtSim
CANDO1 PrecipAndTempCando1Sim
CHURCHF PrecipAndTempChurchfSim
EDMORE PrecipAndTempEdmoreSim
LEEDS PrecipAndTempLeedsSim
ROLLA1 PrecipAndTempRolla1Sim

Note that records can be added or deleted to this table if additional precipitation and temperature
information is obtained and converted for use by PRINET. For the CANDO1 precipitation gage,
for example, the Access table where the information is stored is called
PrecipAndTempCando1Sim. The tables listed in the “TableName” field of the above tables are
all the tables in Access where the precipitation, temperature, and Snowmelt data is contained.

The precipitation gage tables contain the information for measured precipitation and temperature,
as well as all the information for the future simulations. All measured values are listed under
Sequence = “COMP.” Here are some sample records from PrecipAndTempCando1Sim:

Sequence SimulDate ClimDate TAvg Precip SnoPlusRain
COMP 7/25/86 7/25/86 63.39 0 0
COMP 7/26/86 7/26/86 68.695 0.18 0.18
COMP 7/27/86 7/27/86 68.51 0.38 0.38
COMP 7/28/86 7/28/86 66.29 0.16 0.16
COMP 7/29/86 7/29/86 70.385 0.46 0.46
COMP 7/30/86 7/30/86 69.83 0 0
COMP 7/31/86 7/31/86 62.775 0 0

These records show the Simulation Date (which is the same as the Climatic Date for all records
labeled “COMP”), the average temperature (in the TAvg field, in degrees Fahrenheit), the
Precipitation (in the Precip field, which is in inches as recorded by the gage) and a column called
SnoPlusRain. The SnoPlusRain column is the calculated Rain + Snowmelt runoff, in inches.
This is calculated by PRINET; the methodology to calculate it is explained in a subsequent
section.

For future simulations, the Sequence field of each precipitation gage table contains the
simulation climate sequence name. For example, for climate sequence 007, from the
PrecipAndTempCando1Sim table, here are some sample records:

 A-25

Sequence SimulDate ClimDate TAvg Precip SnoPlusRain
007 3/27/16 3/27/85 30.695 0.01 0
007 3/28/16 3/28/85 32.345 0.07 0
007 3/29/16 3/29/85 20.16 0.41 0
007 3/30/16 3/30/85 18.46 0 0
007 3/31/16 3/31/85 21.705 0 0
007 4/1/16 4/1/85 28.25 0 0
007 4/2/16 4/2/85 40.39 0 0.4473
007 4/3/16 4/3/85 40.23 0 0.0427

For example, the simulation date 3/27/16 (3/27/2016) has a climatic date of 3/27/85, that is it
uses the climatic data from 3/27/85. This climatic data source date was determined by the future
simulation climate sequence for sequence 007, which dictates that simulation water year 2016
will use climatic data from water year 1985. For this climatic date, for the CANDO1 gage
record, the average temperature was 30.695 and the precipitation was 0.01.

A.2.4.2.1. Generation of the SnoPlusRain column in the Precipitation and Snowmelt Data
Tables

As explained previously, the average temperature and precipitation records for the Precipitation
and Snowmelt Data tables are obtained by the use of the original gage records and by the use of
the simulation substitution dates to generate records for the future simulations. However, the
snowmelt plus rain is calculated by PRINET, and not obtained directly from the original gage
records. It is this snowmelt plus rain, contained in the SnoPlusRain column, that is used by
PRINET as the daily “precipitation.”

The snowmelt plus rain column (SnoPlusRain, shown in inches), is calculated by PRINET using
the SnoPlusRain form in the database. This was done once for each gage, before the calibrations
or future simulations were run.

The algorithm to generate the snowmelt plus rain is identical to the degree-day method used in
HEC-1, the U.S. Army Corps of Engineers Hydrograph Package (HEC-1 User’s Manual, U.S.
Army Corps of Engineers, 1990, p. 14 and p. A-43).

To calculate the snowmelt, the Snowmelt routine cycles through each day, from the first day of
each simulated run to the last. For each day the routine does the following:

(1) Rainfall is calculated: If the average temperature is less than or equal to the Freezing
Temperature plus 2 degrees Fahrenheit (Freezing Temperature was set at 34 degrees
for all gages), then any precipitation falls as snow and goes into the snow pack as a
snow-water equivalent. If the average temperature is above Freezing Temperature +
2 degrees Fahrenheit, then any precipitation falls as rain and is added to the
“SnoPlusRain” column.

 A-26

(2) Snowmelt is calculated: If the average temperature is above the Freezing
Temperature, then snowmelt equals [(the day’s average temperature) – (Freezing
Temperature)] * Factor.

For all the gages used in six subbasins modeled, the freezing temperature was 34 and the factor
was 0.07. This freezing temperature as well as the factor of 0.07 (called “coefficient” in the
HEC-1 documentation) are within the recommend ranges detailed in the HEC-1 documentation.

Here is an example from one of the simulated gage records:

Sequence SimulDate ClimDate TAvg Precip SnoPlusRain
008 10/27/2006 10/27/1996 35.5 0.85 0.105
008 10/28/2006 10/28/1996 34.5 0 0.035
008 10/29/2006 10/29/1996 42 0 0.56
008 10/30/2006 10/30/1996 27 0 0
008 10/31/2006 10/31/1996 14.5 0 0
008 11/1/2006 11/1/1996 16.5 0 0
008 11/2/2006 11/2/1996 17 0 0
008 11/3/2006 11/3/1996 36.5 0 0.15

On 10/25/2006, 0.85 inches of precipitation falls. Since TAvg <= 36, it falls as snow. The
snow-water equivalent is now 0.85 inches (there is no snow-water equivalent from previous days
since these days were warm enough to melt any accumulated snow). Since TAvg > 34, there is
snowmelt. The snowmelt is (35.5 – 34) * 0.07 = 0.105 inches. This is entered into the
SnoPlusRain column for that day, and the snow-water equivalent is reduced by this amount, it is
now 0.85 inches – 0.105 inches = 0.745 inches. The following day, on 10/28/2006, TAvg = 34.5
> 34, so the snowmelt is (34.5 – 34) * .07 inches = 0.035 inches, and the snow-water equivalent
is reduced to 0.745 inches – 0.035 inches = 0.71 inches. On 10/26/2006, TAvg = 42 > 34, so the
snowmelt is (42 – 34) * 0.07 inches = 0.56, and the snow-water equivalent is reduced to 0.71
inches – 0.56 inches = 0.15 inches. All subsequent days until 11/3/2006 are sub-freezing and
have no precipitation. On 11/3/2006, the temperature is 36.5 degrees, which permits a snowmelt
of (36.5 – 34) * 0.07 = 0.175 inches. The snow-water equivalent is only 0.15 inches, however,
so all the snow melts and 0.15 is recorded in the SnoPlusRain column, and the snow-water
equivalent to be carried over to the next day is zero.

A.2.4.3. Evaporation

Evaporation was calculated based primarily on the monthly evaporation data for Devils Lake
provided for 1980 through 1999 by Aldo V. Vecchia of the USGS. This source data is shown in
the following table, where the values in the table are evaporation in inches:

 A-27

Table A-3. Monthly Evaporation Values For Devils Lake Provided by USGS (in inches)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1980 0 0 0 0.45 4.18 6.1 7.05 5.34 3.7 2.18 1.58 0
1981 0 0 0 2.1 3.5 4.55 5.66 6.03 4.86 1.43 1.04 0
1982 0 0 0 0.45 2.86 4.64 5.23 5.93 4.79 1.41 1.02 0
1983 0 0 0 0.45 3.59 5.09 5.5 6.41 5.7 1.68 1.21 0
1984 0 0 0 1.37 3.87 4.45 6.06 6.67 5.34 1.58 1.14 0
1985 0 0 0 1.42 4.03 5.92 6.21 5.61 4.48 1.32 0.95 0
1986 0 0 0 2.68 3.51 7.19 4.72 6.21 3.76 1.11 1.74 0
1987 0 0 0 1.31 3.63 7.28 4.92 6.09 4.32 3.82 1.84 0
1988 0 0 0 1.44 4.12 8.81 6.78 6.63 4.61 4.08 1.97 0
1989 0 0 0 1.33 3.72 5.08 6.9 6.94 5.24 4.64 2.24 0
1990 0 0 0 1.36 3.81 5.44 5.82 6.76 5.89 5.21 2.51 0
1991 0 0 0 1.51 4.39 4.97 5.87 6.97 4.95 4.38 1.06 0
1992 0 0 0 1.37 3.86 5.66 3.98 5.26 4.41 3.9 0.94 0
1993 0 0 0 1.26 3.44 4.31 3.43 4.49 3.92 3.47 0.84 0
1994 0 0 0 1.34 3.75 4.55 4.88 5.64 4.73 2.79 0.67 0
1995 0 0 0 2.11 4.58 5.16 6.25 6.21 5.08 2.99 0.72 0
1996 0 0 0 0.45 2.7 5.08 5.02 6.12 4.55 2.69 0.65 0
1997 0 0 0 0.45 3.52 7.02 4.75 5.65 5.02 2.96 0.71 0
1998 0 0 0 2.08 3.46 4 5.6 6.05 5.56 3.28 0.79 0
1999 0 0 0 0.45 3.14 4.42 4.91 5.56 5.59 3.3 0.79 0

This data appears in the database in a different format, in the table DevilsLakeUSGS. Here is a
sample of a few records of that table:

Year Month USGSEvapIn
1980 1 0
1980 2 0
1980 3 0
1980 4 0.45
1980 5 4.18
1980 6 6.1
1980 7 7.05
1980 8 5.34
1980 9 3.7
1980 10 2.18
1980 11 1.58
1980 12 0
1981 1 0
1981 2 0

Because PRINET requires daily evaporation values, these monthly evaporation values provided
by the USGS had to be converted into daily values (they were also converted from inches to

 A-28

meters). The daily evaporation values for use by PRINET are contained in the EvapSim table.
Following are a few sample records from that table:

Sequence SimulDate ClimDate EvapPropM
COMP 8/1/1982 8/1/1982 0.005416202
COMP 8/2/1982 8/2/1982 0.00644786
COMP 8/3/1982 8/3/1982 0.003868716
COMP 8/4/1982 8/4/1982 0.005932031
COMP 8/5/1982 8/5/1982 0.005416202
COMP 8/6/1982 8/6/1982 0.007737432
COMP 8/7/1982 8/7/1982 0.004900374
COMP 8/8/1982 8/8/1982 0.006963688
COMP 8/9/1982 8/9/1982 0.00644786
COMP 8/10/1982 8/10/1982 0.004900374
COMP 8/11/1982 8/11/1982 0.004384545
COMP 8/12/1982 8/12/1982 0.006963688

The Sequence column is the simulation climate sequence number. When Sequence = COMP, the
evaporation values (in the EvapPropM field) are the historical values, in meters, for evaporation.
For other sequences, they are the simulated daily evaporations. For example, here is another
section of the EvapSim table:

Sequence SimulDate ClimDate EvapPropM
002 8/1/2009 8/1/1982 0.005416202
002 8/2/2009 8/2/1982 0.00644786
002 8/3/2009 8/3/1982 0.003868716
002 8/4/2009 8/4/1982 0.005932031
002 8/5/2009 8/5/1982 0.005416202
002 8/6/2009 8/6/1982 0.007737432
002 8/7/2009 8/7/1982 0.004900374
002 8/8/2009 8/8/1982 0.006963688
002 8/9/2009 8/9/1982 0.00644786
002 8/10/2009 8/10/1982 0.004900374
002 8/11/2009 8/11/1982 0.004384545
002 8/12/2009 8/12/1982 0.006963688

These show the evaporation records for climate sequence 002, for simulated dates 8/1/2009
through 8/12/2009. Because the climatic dates used for these dates are 8/1/1982 through
8/12/1982 (based on climate sequence 002 which has simulated water year 2009 = climatic water
year 1982), the evaporation numbers are the same as in the previous table.

The daily values were developed using the proportional weights from a nearby evaporation gage,
the Langdon gage. These proportional weights were applied to the USGS evaporation values.
For example, the month of August 1982 had a total evaporation of 5.93 inches according the
USGS evaporation values. The Langdon evaporation provided a daily distribution of

 A-29

evaporation values for the month of August 1982. Therefore each day in August 1982 is
assigned a weighting value equal to (Langdon Evaporation for that Day) / (Total Langdon
Evaporation for August 1982). These daily weights were multiplied by the USGS evaporation
values to provide daily values for use by PRINET.

The evaporation values for the Langdon gage are in the table LangdonDailyEvap. Following are
a few sample records from that table, with the evaporation shown in inches:

Year Month Day Evaporation
1982 8 1 0.21
1982 8 2 0.25
1982 8 3 0.15
1982 8 4 0.23
1982 8 5 0.21
1982 8 6 0.3
1982 8 7 0.19
1982 8 8 0.27
1982 8 9 0.25
1982 8 10 0.19
1982 8 11 0.17
1982 8 12 0.27

For example, the total Langdon evaporation for August 1982 turns out to be 5.84 inches. For
8/6/1982, then, the weighting factor would be 0.3 / 5.84 = 0.005137. This is multiplied times the
USGS evaporation value for August 1982 of 5.93 inches: 0.005137 * 5.93 = 0.304623 inches.
Converted to meters, 0.304623 inches * 0.0254 meters / inch = 0.00077374 meters. This is the
evaporation value used for climatic day 8/6/1982 by PRINET.

Evaporation values for water years 1978 and 1979 (used in the warm-up period before the 1985-
1999 calibration period), as well as for water year 2000 (used to warm up for the simulation
runs) were not provided by the USGS. For water years 1978 and 1979, the same evaporation
was used as was generated for water year 1980. For water year 2000, the evaporation was
estimated based on the Langdon evaporation records and on the evaporation values provided by
the USGS for 1980-1999. The evaporation at the Langdon gage was substantially higher in
water year 2000 than in 1999. Based on comparisons between the behavior of the Langdon gage
values versus the USGS evaporation values, a value of 35.97 inches of evaporation was
estimated for water year 2000. This compares to a range of about 26-38 inches per water year
from the USGS evaporation values for 1980-1999.

A.2.4.4. Lake data

Lakes are a feature of the program which allows the use of storage-outflow curves for specified
water bodies. The normal behavior of on-river depressions in PRINET is that water flows into a
subbasin’s on-river depressions until their depressional capacity is exceeded. At that point any
excess immediately flows to the downstream subbasin. Lakes override this behavior by using a

 A-30

storage-outflow table. The storage-outflow relationships for all the lakes used in the different
subbasins are shown in the following table (the field names are rotated vertically to fit the table
on the page):

La
ke

ID

LA
KE

La
ke

El
ev

at
io

nF
T

Vo
lu

m
eM

3

Vo
lu

m
eA

cr
eF

ee
t

Fl
ow

M
3P

D

Fl
ow

C
FS

Ar
ea

M
2

Ar
ea

Ac
re

s

1 SWMORR 1452 0 0 0 0 0 0
1 SWMORR 1453 1480188 1200 0 0 5058575 1250
1 SWMORR 1454 3947168 3200 0 0 9307778 2300
1 SWMORR 1455 7647638 6200 0 0 12949950 3200
1 SWMORR 1456 13321690 10800 0 0 16592130 4100
1 SWMORR 1457 19489140 15800 0 0 19829610 4900
1 SWMORR 1458 25903290 20999 0 0 22662420 5600
1 SWMORR 1459 33304230 26999 0 0 25495220 6300
1 SWMORR 1460 37577230 30463 168812 69 27012790 6675
1 SWMORR 1460 41938660 33999 479524 196 28530360 7050
1 SWMORR 1461 46833220 37967 880759 360 30047940 7425
1 SWMORR 1461 51806580 41999 1355390 554 31565510 7800
1 SWMORR 1462 57073420 46268 1896078 775 33184250 8200
1 SWMORR 1462 62907990 50998 2490590 1018 34803000 8600
1 SWMORR 1463 68297820 55368 3138927 1283 36320570 8975
1 SWMORR 1463 74379450 60298 3836194 1568 37838140 9350
2 DRYLAKE 0 0 0 0 0 0
2 DRYLAKE 1442 616745 500 0 0 7689034 1900
2 DRYLAKE 1443 3453772 2800 0 0 12342920 3050
2 DRYLAKE 1444 7647638 6200 0 0 15378070 3800
2 DRYLAKE 1445 12951650 10500 0 0 18210870 4500
2 DRYLAKE 1446 18502350 15000 73397 30 20638990 5100
2 DRYLAKE 1447 25163200 20399 342517 140 22257730 5500
2 DRYLAKE 1448 28616970 23199 562707 230 22864760 5650
2 DRYLAKE 1448 32070740 25999 831828 340 23471790 5800
2 DRYLAKE 1449 39471680 31999 1492397 610 24685850 6100
2 DRYLAKE 1450 47119320 38199 2348690 960 25899900 6400
2 DRYLAKE 1451 54766960 44399 3400708 1390 27113960 6700
2 DRYLAKE 1452 62907990 50998 3938950 1610 28328020 7000
3 MIKESLAKE 0 0 0 0 0 0
3 MIKESLAKE 1442 863443 700 0 0 1687541 417
3 MIKESLAKE 1442 1110141 900 293586 120 2448350 605
3 MIKESLAKE 1443 1480188 1200 513776 210 4358468 1077
3 MIKESLAKE 1444 2960376 2400 1027552 420 6114805 1511
3 MIKESLAKE 1445 4440564 3600 1345604 550 7873166 1945
3 MIKESLAKE 1446 7154242 5800 1663656 680 9210653 2276
3 MIKESLAKE 1447 11101410 9000 1932776 790 10550160 2607

 A-31

La
ke

ID

LA
KE

La
ke

El
ev

at
io

nF
T

Vo
lu

m
eM

3

Vo
lu

m
eA

cr
eF

ee
t

Fl
ow

M
3P

D

Fl
ow

C
FS

Ar
ea

M
2

Ar
ea

Ac
re

s

4 CHAINLAKE 0 0 0 0 0 0
4 CHAINLAKE 1440 666085 540 70950 29 1078488 266
4 CHAINLAKE 1442 1726886 1400 269121 110 2804474 693
4 CHAINLAKE 1442 2096933 1700 623871 255 3237488 800
4 CHAINLAKE 1443 3237911 2625 1228169 502 4313953 1066
4 CHAINLAKE 1444 5057309 4100 2162752 884 6814912 1684
4 CHAINLAKE 1445 10176290 8250 3395815 1388 9313848 2301
4 CHAINLAKE 1446 16035370 13000 4932250 2016 10327590 2552
5 LAKEALICE 1438 0 0 0 0 0 0
5 LAKEALICE 1439 481061 390 755985 309 3156551 780
5 LAKEALICE 1440 1887240 1530 1370069 560 6070290 1500
5 LAKEALICE 1441 4169196 3380 2260615 924 8903092 2200
5 LAKEALICE 1442 7326931 5940 3288167 1344 11816830 2920
5 LAKEALICE 1443 11372780 9220 4521229 1848 14730570 3640
5 LAKEALICE 1444 16652120 13500 5754291 2352 25733980 6359
5 LAKEALICE 1445 24053060 19499 6713340 2744 36733350 9077
5 LAKEALICE 1446 34537720 27999 7809396 3192 41415560 10234
6 LAKEIRVINE 1438 0 0 0 0 0 0
6 LAKEIRVINE 1439 1541863 1250 0 0 10117150 2500
6 LAKEIRVINE 1440 5118984 4150 0 0 13354640 3300
6 LAKEIRVINE 1441 9275845 7520 0 0 14406820 3560
6 LAKEIRVINE 1442 11980890 9713 0 0 14576790 3602
6 LAKEIRVINE 1442 13784250 11175 247102 101 14690100 3630
6 LAKEIRVINE 1443 18304990 14840 587173 240 14973380 3700
6 LAKEIRVINE 1444 22899740 18564 902778 369 15175730 3750
6 LAKEIRVINE 1445 27556170 22339 1365176 558 15378070 3800
6 LAKEIRVINE 1446 45639130 36999 1849594 756 17996390 4447
6 LAKEIRVINE 1447 56740540 45999 2360923 965 20614700 5094

The preceding table is based on the tables shown in the January 1995 report “Devils Lake Basin
Water Management Plan” (North Dakota State Water Commission, 1995), which provides flows,
volumes and surface areas for the six lakes listed.

For each lake, there are a series of records in the Lake table. Each record corresponds to a lake
elevation. For each lake elevation, there is a corresponding volume (VolumeM3, the volume in
cubic meters) and Flow (FlowM3PD, the flow in cubic meters per day). The actual Lake table
used by PRINET has many additional records not shown here; these are records interpolated
between various elevations so that the flows will not shift abruptly. Furthermore, the Lake table
has additional records to allow for higher flows when the lake volumes exceed the range given in
the 1995 report. The maximum flow permitted for any lake was 50% greater than the highest

 A-32

flows given in the 1995 North Dakota State Water Commission Report. These higher flows were
added to the lake table because the observed flows in some years at Big Coulee were
considerably higher than the maximum outflow given for Lake Irvine (the final lake before the
Big Coulee outlet) in the NDSWC report.

For each lake, for each simulation day, PRINET looks up the nearest volume which is less than
or equal to current water volume of the lake in the simulation, and uses the flow that is contained
in that record of the Lakes table.

Note that Mike’s Lake, Chain Lake, and Lake Alice have downstream dependencies; that is, their
flow depends on the elevation of the immediate downstream lake (the flow sequence is Mike ->
Chain -> Alice -> Irvine). These dependencies are not taken into account in PRINET, which
could affect the timing of the flows from these lakes.

Lakes were assigned as to the following subwatersheds:

Lake LakeID Subwatershed
where located

Sweetwater-
Morrison
Lakes

1 EDMORE

Dry Lake 2 STARKWEATHER

Mike’s Lake 3 MAUVAIS

Chain Lake 4 MAUVAIS

Lake Alice 5 MAUVAIS

Lake Irvine 6 MAUVAIS

A.2.4.5. Input Streams

The Devil’s Lake watershed was separated in 6 subwatersheds: Comstock, Hurricane Lake,
Mauvais, Mauvais 6100, Edmore, and Starkweather. Some of these subwatersheds flow into
other subwatersheds. Mauvais 6100 and Hurricane Lake flow into Mauvais. Edmore flows into
Starkweather. PRINET is able to accommodate inflows by the use of input streams. Input
streams are specified in the InputStreamTable field of subwatershed MODEL table. For
example, Hurricane Lake is input into the Mauvais model as shown in the first few fields of a
record from the MODEL_MAUVAIS_A_WSHEDS:

 A-33

SubBSeq WShid DSSubBSeq PrecipGage Region InitWaterM3 InputStreamTable
2993 3001 3006 CHURCHF 4 0 HURRLAKE

PRINET inputs the daily outflows from Hurricane Lake, using the Hurricane Lake’s model
output tables, into the subbasin where HURRLAKE is specified as an input stream table. The
climate sequence and restoration scenario are matched, for example if restoration scenario “B” of
sequence 008 is running, then OUTPUT_HURRLAKE_008_B will be the table used to retrieve
the inflows into the MAUVAIS model.

A.2.4.6. Additional Tables and Queries Used by PRINET

In addition to model and input tables, there are other tables and queries that are used in the
running of PRINET. These are not data but are either templates (in the case of tables) which are
used to create new tables during the running of PRINET, or queries which are can be considered
part of PRINET program.

Furthermore, the program itself generates various temporary tables and queries while it is
running. All of these tables and queries are prefixed with the letters TEMP or Temp. Some of
these tables and queries may remain in the database after the simulation is completed, but once
PRINET has stopped running, these temporary tables and queries have no function and can be
deleted by the user.

A.2.5. Model Outputs

PRINET generates output tables of four types: output, outflow, inflow, and season tables.

A.2.5.1. Output Tables

Output tables contain the daily flows at the outlet the subwatershed being modeled, as well as
various other calculated values for each day. The following shows a sample of a few records
from an output table:

Date CMPD StorageVolUtil SoilCapacityFraction PrecipM3 LostToETM3 LostToEvapM3 LostToPercM3

4/1/2005 0 0.5717619 0.601377 0 145770.3 80426.88 0
4/2/2005 0 0.5713992 0.6017377 0 145638.3 80382.82 0
4/3/2005 0 0.5710367 0.602098 0 145506.6 80338.77 0
4/4/2005 0 0.5706744 0.6024581 0 145374.9 80294.71 0
4/5/2005 0 0.5703123 0.6028178 0 145243.4 80250.66 0
4/6/2005 0 0.5699504 0.6031772 0 145111.9 80206.6 0
4/7/2005 0 0.5695887 0.6035363 0 144980.6 80162.55 0
4/8/2005 0 0.5692272 0.6038951 0 144849.4 80118.49 0
4/9/2005 0 0.5688659 0.6042535 0 144718.4 80074.44 0

4/10/2005 26828.6 0.5877758 0.5862642 11855380 151296.8 83072.66 0
4/11/2005 96627.75 0.6392586 0.5606636 23224360 160658.5 90088.36 0

 A-34

4/12/2005 27265.65 0.6405806 0.5610612 0 160513.1 90169.45 0

The fields have the following definitions:

• Date – The simulation day.

• CMPD – The outflow in cubic meters (the field name CMPD stands for Cubic Meters Per
Day).

• StorageVolUtil – The fraction of the total intact depressional volume that is filled with
water. Note that in the case of the restoration simulations (restoration scenarios B, C, D
and E), there is a one-time abrupt change in the total intact depressional volume. This
occurs on the restoration transition date, when the intact depressional volume is suddenly
increased to a new, higher level.

• SoilCapFraction – The weighted average over the subwatershed of the soil capacity (i.e.
dryness) as a percentage of the total potential soil capacity.

• PrecipM3 – Cubic meters of precipitation over the subwatershed.

• LostToETM3 – Cubic meters of water lost to evapotranspiration.

• LostToEvapM3 – Cubic meters of water lost to evaporation from standing water in
depressions or lakes.

• LostToPercM3 - Cubic meters of water lost to percolation.

The naming convention of the output tables is:

OUTPUT_<SUBWATERSHED>_<SEQ>_<RESTSCENARIO>

OUTPUT tables are included for every combination of:

• Climate sequence 001 through 010 and the WET climate sequence.

• Restoration scenarios A through E.

• The 6 subwatersheds: COMSTOCK, MAUV6100 (everything upstream of the 05056100
stream gage), MAUVAIS (the Mauvais Coulee subwatershed, excluding the area covered
by MAUV6100, but including St. Joe and Calio), EDMORE, STARKWEATHER, and
HURRLAKE (Hurricane Lake subwatershed).

For example for EDMORE, climate sequence 008, restoration scenario C, the table name is
OUTPUT_EDMORE_008_C.

 A-35

A.2.5.2. Outflow Tables

Outflow tables are those generated by placing text in one or more of the ExtraOutflowID fields
in the MODEL_<SUBWATERSHED>_<RESTSCENARIO>_WSHEDS table. They give daily
water volume flowing into a particular subbasin. The naming convention is:

OUTFLOW_<SUBWATERSHED>_<ExtraOutflowID>_<SEQ>_<RESTSCENARIO>

For example, OUTFLOW_MAUVAIS_MIKE_003_B is the table with the outflows at Mike’s
Lake for the MAUVAIS subwatershed model, climate sequence 003, restoration scenario B.

The data structure of an outflow table consists only of the date and flow in cubic meters per day.
Following is a sample of a few records from an outflow table.

Date CMPD
4/9/2017 553165.9

4/10/2017 519158.8
4/11/2017 485151.7
4/12/2017 451144.6
4/13/2017 0
4/14/2017 0

An explanation of how to enter an outflow file for a model’s subbasin appears in the section
describing the MODEL_ tables. The following outflow tables are included for all climate
sequence restoration scenarios:

OUTFLOW_MAUVAIS_05056270

OUTFLOW_MAUVAIS_05056400

OUTFLOW_MAUVAIS_MIKE

OUTFLOW_MAUVAIS_CHAIN

OUTFLOW_MAUVAIS_ALICE

OUTFLOW_MAUVAIS_IRVINE

For the calibration runs (COMP_A), all the above are included plus these additional outflows:

OUTFLOW_MAUVAIS_05056060_COMP_A

OUTFLOW_HURRLAKE_05056340_COMP_A

 A-36

A.2.5.3. Inflow Tables

Inflow tables are those generated by placing text in one or more of the ExtraInflowID fields in
the MODEL_<SUBWATERSHED>_<RESTSCENARIO>_WSHEDS table. They give daily
water volume flowing into a particular subbasin. The naming convention is:

INFLOW_<SUBWATERSHED>_<ExtraInflowID>_<SEQ>_<RESTSCENARIO>

For example, INFLOW_MAUVAIS_MIKE_003_B is the table with the inflows at Mike’s lake
for the MAUVAIS subwatershed model, climate sequence 003, restoration scenario B.

The structure of inflow tables is identical to that of outflow tables. As in the outflow tables, only
the fields Date and CMPD are present.

An explanation of how to request an inflow table for a model’s subbasin appears in the section
describing the MODEL_ tables. The following inflow tables are included for all climate
sequences and restoration scenarios, and for the COMP_A run also:

INFLOW_MAUVAIS_MIKE

INFLOW_MAUVAIS_CHAIN

INFLOW_MAUVAIS_ALICE

INFLOW_MAUVAIS_IRVINE

A.2.5.4. Seasons Tables

Each simulation run produces a corresponding SEASONS table which provides that dates of the
transitions between high infiltration (H or Regime 2) and low infiltration (L or Regime 1) and
back.

The naming convention for the SEASONS tables is:

OUTPUT_<SUBWATERSHED>_SEASONS_<SEQ>_<RESTSCENARIO>

For example, the SEASONS table for the EDMORE subwatershed, for climate sequence 005 and
restoration scenario A is:

 OUTPUT_EDMORE_SEASONS_005_A

The SEASON table shows at which date the Regime (season) began for each gage used by each
simulation. Here are a few sample records from a SEASONS table.

 A-37

Gage StartDate Season MovingAverage
CHURCHF 5/16/2018 H 45.7673263549805
CHURCHF 11/10/2018 L 34.1911659240723
CHURCHF 4/29/2019 H 45.7068328857422
CHURCHF 11/17/2019 L 34.6288375854492
CHURCHF 5/15/2020 H 45.7041702270508
EDMORE 10/1/1978 H 0
EDMORE 11/18/1978 L 34.6833343505859
EDMORE 5/28/1979 H 45.3499984741211
EDMORE 11/8/1979 L 34.7999992370605
EDMORE 4/27/1980 H 45.283332824707
EDMORE 11/11/1980 L 34.9166679382324

For this example, the entry threshold for Regime 1 (Low infiltration) was set at 35 degrees F, and
the entry threshold for Regime 2 was set at 46 (in the MODEL_<SUBWATERSHED>-
_<RESTSCENARIO> table). When in Regime 2 and the 30-day moving average first dipped
below 35 degrees F, the Regime switched to 1, and the date and 30-day moving average
temperature were recorded in the SEASON table. When in Regime 1 and the 30-day moving
average first went above 45 degrees F, the Regime switched to 2, and the data and 30-day
moving average temperature were recorded in the SEASON table. So for the table shown,
5/16/2018-11/09/2018 are in the High regime (Regime = 2) while 11/10/2018 to 4/18/2019 are in
the Low regime (Regime = 1), for the CHURCHF gage.

Notice that for the record for the Edmore Gage at Date 10/1/1978, there is no moving average.
The season for the first date of the simulation is not set by the 30-day moving average but by the
start day’s average temperature (which is not shown but must have been greater than 35 degrees
since PRINET assigned it to the High regime [Regime = 2]).

A.3. PRINET SIMULATION FLOWCHART

A flowchart, shown in Figure A-8. Pothole-River Networked Watershed Model (PRINET) Flow
Chart., illustrates the calculations performed during the simulations. Figure A-9 illustrates some
of the variables used in the soil moisture accounting routines that are used by PRINET.

 A-38

Figure A-8. Pothole-River Networked Watershed Model (PRINET) Flow Chart.

START SIMULATION
fn: RunSimul_Click

Begin Loop
CurrentDate = StartDate to EndDate

fn: LaunchSimulation

Set Simulation StartDate and EndDate
fn: GetSimulLength

Read Watershed Subbasin Parameters for the
Base (Unrestored) Scenario

fn: ReadInWaterSheds

Read Daily Precipitation Data
fn: GetPrecipGages

Read Daily Evaporation Data
fn: GetEvap

Regime Setting
fn: SetSeasonBreaks

For each precipitation gage, a regime (i.e., season) is assigned to
every simulation date based on the gage air temperature. There are
two regimes and only two transitions between regimes per year.

Read Regime Related Parameters
fn: ReadRegimeParams

Set Initial Condition
fn: LaunchSimulation

For each subbasin, based on the assigned precipitation gage and the
start simulation date, find the previously determined regime. Then
read the initial soil capacity corresponding to that regime.

Begin Loop
SubB = 1 to NumSubBasins (u/s to d/s)

Set Regime Variables
For each subbasin, find what regime is associated with the
assigned precipitation gage for the current date. Then set all
the regime related parameters corresponding to that regime.

Find Precipitation
PrecipM > 0?

Find Infiltration
InfilM = Minimum (Precipitation, Potential Infiltration,
starting soil capacity)

InfilM=0

Find Runoff from Non-depressional Areas
(= non-infiltrated precipitation times non-depressional area)
This runs off into on river and off river depressions.

Find Percolation
PercM, SoilCapM

Find Precipitation on Depressional Areas
PrecipOnDepOnRiverM3, PrecipOnDepOffRiverM3

Find Soil Evapotranspiration
SoilEvapM = DailyEvap × Acutal ETCoef

(The actual ETCoef is determined based upon the potential ETCoef, the water
content currently in the soil profile, and the maximum depth of the soil profile
tension zone.)

Find Change of Soil Capacity due to Soil
Evapotranspiration

Calculate Depressional Storage
DepStorOnRiverM3, DepStorOffRiverM3

[starting storage + runoff from non-depressional areas + precipitation on
depressional areas + inflow from u/s subbasin + inflow as an input stream from other
watersheds or modeling regions (if any)]

Find Lake Surface Area for
Evaporation

(The surface area found previously based on the
current depressional storage in the ON depressions is
replaced with the lake surface area, which is
determined using the lake surface area and lake storage
table.)

Find Evaporation from ON River Depressions
[equals the surface area times the daily evaporation. After the evaporation
is calculated, the depressional (or lake) storage is updated accordingly.]

End Loop
SubB = NumSubBasins?

fn: CalcOneDayFlow

End Loop
CurrentDate = EndDate ?

fn: LaunchSimulation

Find Surface Area of the ON River Depressions for
Evaporation (Is a function of the current depression storage.)

END
SIMULATION

Yes

No

Yes

No

No

Yes

No

No

Yes

Find Starting Soil Capacity and Adjust
Potential Infiltration Rate

Find Inflow to D/S Subbasin
[A portion of the outflow from ON river depressions or a lake goes to the
downstream subbasin on the same simulation day as an inflow to the d/s
subbasin. The remainder appears in the d/s subbasin on the following
simulation day.]

Retrieve Lake Tables
fn: GetLakes

Is there a LAKE
here?

Find Surface Area of the OFF River Depressions for
Evaporation (Is a function of the current depression storage.)

Find Evaporation from OFF River Depressions
(Similar to the calculation for the evaporation from ON river depressions)

Find Outflow from OFF River Depressions
[The outflow occurs only if the OFF river depression has overflowed
(current volume > the maximum available storage). Outflow equals the
difference between the current volume and the maximum available storage.
It will flow into the ON river depressions located in the same subbasin.
Outflow goes to the downstream subbasin.]

Find Outflow from ON River Depressions
[The outflow occurs if the ON river depression has overflowed (current
volume > the maximum available storage). Outflow equals the difference
between the current volume and the maximum available storage.]

Is there a LAKE?
Find Lake Outflow

(The lake outflow is determined using the lake
storage and lake outflow table. This overrides
the ON river depression outflow previously
calculated.)

Output
Simulation

Results

Set Name of All Model Input Tables
fn: SetModelTableNames

Initialize External Variables
fn: InitializeExternalVariables

Yes

No

Is CurrentDate =
RestorationTransitionDate?

Read Restoration Watershed Subbasin Parameters
fn: ReadInRestorationWaterSheds

Yes

No

 A-39

Figure A-9. A schematic representation of soil profile, with variables labeled.

All dimensions are depths of equivalent water; they do not correspond to physical depths nor do
the dry / water areas correspond to physical locations. PRINET tracks soil capacity as a depth in
meters for each subbasin on a daily basis. Soil capacity is decreased by infiltrated precipitation.
Soil capacity is increased by evapotranspiration or percolation.

Some notes regarding the flowchart follow. The headings of the following sections correspond
the titles of the boxes in the flowchart.

A.3.1. Begin Loop SubB = 1 To NumSubBasins

The subbasins are sequenced so that the lowest numbered subbasins are the most upstream.
Therefore, this loop cycles from the upstream to downstream subbasins.

A.3.2. Read Restoration Watershed Subbasin Parameters

When the simulation date reaches the restoration transition date (the date at which restoration of
drained depressions is assumed to be implemented) which was 10/1/2003, PRINET reads the
parameters from the MODEL table corresponding to the restoration scenario being simulated.
These parameters are used for all simulations from 10/1/2003 forward. For example, suppose the
current simulation is for the COMSTOCK watershed, climate sequence 005, restoration scenario
C. PRINET begins the simulation on 10/1/1978, but using the geometric information for
COMSTOCK contained in MODEL_COMSTOCK_A. It is not until the simulation date reaches
10/1/2003 that PRINET reads in the parameters from MODEL_COMSTOCK_C and begins to
use those parameters for the simulations.

 A-40

A.3.3. Find Starting Soil Capacity and Adjust Potential Infiltration Rate

The actual infiltration rate (the amount of precipitation that can permeate into the soil on a given
day) for a subbasin for a simulation day is based on the maximum potential infiltration rate (from
the InfilMPD field in the REGIME table, this changes seasonally), adjusted according to how
saturated the soil is. Potential infiltration is adjusted as follows:

Actual potential infiltration = maximum potential infiltration * (soil capacity / potential soil
capacity)

Since soil capacity, which is re-computed daily, is a measure of dryness (how much more water
the soil could hold), actual potential infiltration equals its maximum value when the soil is
completely dry. As the soil capacity decreases (i.e. the soil becomes more saturated), the actual
potential infiltration is reduced.

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Soil Capacity / Potential Soil Capacity

 A
ct

ua
l P

ot
en

tia
l I

nf
ilt

ra
tio

n
/ M

ax
im

um
 P

ot
en

tia
l I

nf
ilt

ra
tio

n

Figure A-10. Relationship between soil capacity and actual potential infiltration

A.3.4. Find Percolation

Percolation is loss of soil moisture to groundwater. Percolation, if it occurs, increases the soil
capacity by the percolation amount. Percolation is only permitted by PRINET if the soil capacity
on a given day is less than the upper zone depth (the upper zone depth is a parameter specified in
the REGIME table). Since the upper zone is generally not very deep, this only occurs when the

 A-41

soil is very saturated. If the soil capacity is less than the upper zone depth, the percolation occurs
at the rate specified in the REGIME table.

A.3.5. Find Runoff from Non-depressional Areas

After the actual potential infiltration rate for a subbasin is calculated, then if the precipitation
amount for the day exceeds that rate, all excess (the excess of precipitation minus infiltration)
runs off into the depressions of the subbasin. Since on-river and off-river depressions are
accounted for separately,

Off-river non-depressional runoff = (precipitation not infiltrated) * contributing area for off-river
depressions

and

On-river non-depressional runoff = (precipitation not infiltrated) * contributing area for on-river
depressions.

These runoffs are added, respectively, to the off-river and on-river depressional storage for that
subbasin. Note that the contributing areas do not include the surface areas of intact depressions,
precipitation on these is accounted for separately in PRINET.

A.3.6. Find Soil Evapotranspiration

Each simulation day has a pre-set evaporation amount, read from the EvapSim table. This daily
value, multiplied times the evapotranspiration coefficient (ET Coefficient, from the Regime
table) is the potential evapotranspiration, or potential ET.

Potential ET = Evaporation * ET Coefficient

“Evaporation” in the equation above may refer to a pan evaporation value, or an open water
value. For this study, daily Devils Lake evaporation values were used. These daily values were
computed by converting the monthly Devils Lake evaporation data provided by the USGS to
daily values using the pattern observed at the Langdon pan evaporation gage.

Soil evapotranspiration is calculated based on the following graph, which has been adapted from
Bennett (1998). It is the method used by HEC-HMS to calculate evapotranspiration:

 A-42

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(Tension Zone Depth - Tension Zone Capacity) / Tension Zone Depth
(if tension zone saturated then ET = Potential ET)

ET
 /

Po
te

nt
ia

l E
T

Figure A-11. Graph showing how actual ET is calculated based on Tension Zone Capacity

For example, the Tension Zone Capacity is 0.27 m, and if on a particular simulation day in a
particular subbasin, Tension Zone Depth is 0.13 m, the x-axis value for the above graph is:

 (0.27 – 0.13) / 0.27 = 0.518.

Reading from y-axis of the graph, ET/Potential ET = 0.59. So for this day and location, (actual)
ET = 0.59 * Potential ET = 0.59 * ET Coefficient * Evaporation. The soil capacity (a measure
of soil dryness) is increased by this amount, with the limitation that the soil capacity cannot
exceed the potential soil capacity.

A.3.7. Find Precipitation on Depressional Areas

Precipitation directly over intact depressional areas is assumed to contribute directly to the water
volume in the depression. Each day’s precipitation volume that contributes directly to each
subbasin’s depressional water volume equals the depressional area times the day’s precipitation.
On-river and off-river depressions are accounted for separately.

This is in contrast to the non-depressional areas, for which possible infiltration and runoff is
calculated daily. In essence, the intact depressions are assumed to have impermeable bottoms.

 A-43

A.3.8. Find Surface Area of the On-river Depressions for Evaporation

As the volume of water in depressions decreases, so does the surface area available for
evaporation. The relationship used is:

Surface Area For Evaporation = Depressional Surface Area When Full * (Current Volume of
Water / Depressional Volume) ^ 0.5

For example, if the depression was 40% full, then the surface area for evaporation would be (0.4)
^0.5 = 0.632 times the depressional surface area when full. The daily evaporation data is applied
to this surface area to determine the volume of evaporation. This is done daily by subbasin.
Since each subbasin’s depressional volume is grouped by on-river and off-river depressions, the
evaporation calculation is applied separately to each.

A.3.9. Find Outflow from On-river Depressions

Outflow from on-river depressions occurs when the depressional water storage exceeds the
depressional volume (or in the case of a lake, flow occurs according to the storage-outflow
relationship contained in the Lakes table).

APPENDIX A-2

PRINET Source Code

 1

'Pothole-River Networked Watershed Model V1.0 (PRINET)

'Variables in this program that have units contain the units in the name as
'capitial letters, usually at the end of the variable name. The following
'units are used:
'M - meters
'M2 - square meters
'M3 - cubic meters
'MPD - meters per day
'M3PD or CMPD - cubic meters per per day
'F - degrees Farenheit
'
'Any variable with the word Date in it is a calendar date.
'Other variables without units are either identifiers or dimensionless.

'The term "program" refers to this code and to fixed tables and queries
'used in conjuction with the running of this code.
'The term "model" refers to the specific model whose data is loaded in
'and for which the simulation is performed.

Option Explicit 'forces variable declaration in this module

'WaterShedType is a type is used to contain the information for each watershed
'This information is fixed during the simulation, until the date of of restoration
'transition takes arrives. At that some of the depressional volumes, areas, and watershed
'areas may be changed once and left at the new values until the end of the simulation
'This type will be used for the externally declared WS() array where
'each element in this array corresponds to a subbasin in the model
'Except as noted, all variables are read from the record of identical name in the
'WSHEDS table of the model.
Private Type WaterShedType

SubBSeq As Long 'The Subbasin sequence number assigned by this program to each subbasin
WShid As Long 'The Watershed ID number from Arcview
DSSubBSeq As Long 'The subbasin sequence number of the subbasin downstream of this

subbasin
WSAreaNonDepOnRiverM2 As Double 'The contributing area of

'all intact and drained depressions that intersect the HEC-GeoHMS River network.
It does not

'include the surface area of intact depressions.

DepVolOnRiverM3 As Double 'The depressional volume of all depressions that intesect the
HEC-GeoHMS

'river network

DepAreaOnRiverM2 As Double 'The surface area (when full) of all intact depressions that
intersect

'the HEC-GeoHMS River network

WSAreaNonDepOffRiverM2 As Double 'The contributing area of all intact and drained
'depressions that intersect the HEC-GeoHMS river network.

DepVolOffRiverM3 As Double 'The depressional volume of all intact depression
'that do not intersect the HEC-GeoHMS river network

DepAreaOffRiverM2 As Double 'The surface area (when full) of all intact depressions
'that do not interesect the HEC-GeoHMS river network

WSAreaNonDepFractionOfTotal As Double 'The fraction of the subwatershed that is not
'the surface area of intact depressions. This variable is calculated by the

program
'after the watershed information is read-in, and is used in CalcOneDayFlow
'to weight the soil capacities of each subwatershed to arrive at a weighted average
'soil capacity for the entire watershed

InitWaterM3 As Double 'The initial volume of water in cubic meters that is held in the
'intact depressions of the wateshed. This is used at the start date of the

simulation

 2

PrecipGage As String 'The string identifier of the precipitation gage to use for this
'subwatershed.

Region As Long 'The region number of this subwatershed. This number is refered to
'in the REGIMES table for the model

InputStreamTable As String 'The name of the table that provides an input stream into
'this subwatershed. Those tables's names have the format
'OUTPUT_<InputStreamTable>_<Simulation>_<Restoration Level>
'e.g. OUTPUT_DRYCREEK_COMP_A.
'The fields from the input stream table that are used are [Date] and [CMPD] (cubic

meters
'per day. The output file of any model can function as an input stream into

another
'model.

LakeID As Integer 'The ID number of the lake that exists in this subwatershed. These
'lakes are referenced in the LAKES table

ExtraInflowID As String 'Name for file to write the INFLOWS into this subwatershed
'These inflows will include all upstream inflows, but will not include any input
'stream that was routed into this subwatershed

ExtraInflowIndex As Integer 'An index/ID number for this file. This is generated by
the program

'If = 0 there is no output file for this subwatershed

ExtraOutflowID As String 'Name for file to write the OUTFLOWS of this subwatershed

ExtraOutflowIndex As Integer 'An index/ID number for this file. This is generated by
the program

'If = 0 there is no Outflow output file for this subwatershed

VBInputStreamID As Integer 'An ID number for any input stream into the subwatershed.
'This is generated by the program.

VBGageID As Integer 'An ID number for the gage assigned to this subwatershed.

End Type

'The following Type is used to hold the daily information of the each subbasin's
'status during the runs, and to tract outflows and inflows during the run.
'This Type will be used to declare the external ST() array. This array functions
'by storing the the current date's information in the row. This array only has
'three rows, numbered 0, 1 and 2. The dates will cycle through each of these three
'rows. For example the simulation might start at 0 (although it might start at 1
' or 2), then the next date would be 1,
'the 2nd day would be 2, and the 3rd day would be back to 0. The formula for
'determining the row is CurrentDate - MOD STArrayDim1, where STArrayDim1
'is set to 3. This takes the remainder of the simulation day number (starting
'at 0 for the first day) divided by 3.
'Before each day's run, the ST() row that is 2 days away is initialized.
Private Type SimulTraceType

SimulDate As Date 'The simulation date which corresponds to this row
StartDepStorOnRiverM3 As Double 'The water stored in intact depressions at

'that intersect the river, at the start of the day

StartDepStorOffRiverM3 As Double 'The water stored in intact depressions,
'that do not intersect the river, at the start of day

StartSoilCapM As Double 'The soil capacity of the watershed'at the start
'of the day. When soil capacity is higher, the soil is dryer.

InflowM3 As Double 'The inflow into the subwatershed from upstream
'subwatersheds

 3

OutflowM3 As Double 'The outflow from the subwatershed to downstream
'subwatersheds

End Type

'The following Type is used to hold the gage information that is used
'in the model. The external array GageArray() is dimensioned with two
'indices, the 1st being the gage number assigned by the program (which is
'the VBGageID refered to the WS() array e.g., WS(5).VBGageID is the gage ID
'of the 5th subwatershed.)
'The second index is the date offset from the start date (e.g. this index
' = 0 a the start date. The ReDim declaration occurs in GetPrecipGages
'The 1st two variables, SnoPlusRain and TAvgF are read from a table
'for the gage in the Subroutine GetPrecipGages.
'The 2nd two variables, MovingAverageF and Regime, are
'calculated in the subroutine SetSeasonBreaks--see comments in that
'subroutine for clarification.
Private Type GageType

SnoPlusRainM As Single 'The amount of precipitation + snowmelt
TAvgF As Single 'The day's average temperature
MovingAverageF As Single 'The moving average temperature calculated

'in the subroutine SetSeasonBreaks
Regime As Integer 'The regime number calculated in SetSeasonBreaks

End Type

'The following Type is used to the hold the Regime information for model.
'A regime provides seasonal and geographically based parameters; so that
'for any particular day for a particular subwatershed, a certain Regime
'applies. These parameters are read from the REGIMES table of the model.
'The external array RegimeRegionArray() will be dimensioned with this
'type and with two indices. The first index will be the Regime
'(either 1 for low infilration/winter or 2 for high infiltation/summer)
'This regime (1 or 2) is deterimined by every date of the simulation for
'each Precipation Gage in the model (in SetSeasonBreaks)
''and the second index is the (geographic) region number assigned to each
'subwatershed, found in the WS() array for each subwatershed. Since each
'subwatershed is also assigned a particular precipatation gage, and each
'precipitation gage is assigned to a particular regime based on the
'date, the Regime
'(1 or 2) and the region are unique for each subwatershed on particular day
'of the simulation.
'For example, RegimeRegionArray(2, 3).PercMPD would
'would contain the maximum percolation for the high infiltration (2) regime of the #3
Region
'of the model.
Private Type RegimeType

EntryThresholdF As Double 'The threshold temperature at which
'the regimes switch. This is based on the moving average
'temperature and is explained in the subroutine SetSeasonBreaks

InfilMPD As Double 'The potential infiltration if the soil is dry

PercMPD As Double 'The potential percolation if the soil is dry

ETCoef As Double 'The evapotranspiration coefficient; used to
'determine evaportranspiration in conjunction with the current soil
'saturation level

UpperZoneM As Double 'The length of the upper zone. Percolation can
'only take place with the SoilCapacity is less than the upper zone
'distrance

PotentialSoilCapM As Double 'The potential soil capacity, or how much
'water the soil can hold.

InitialSoilCapM As Double 'The soil capacity on the 1st day of the
'simulation. Higher soil capacity indicates dryer soil.

 4

NextDayFractionalFlow As Double 'A parameter which determines how much
'of the subbasins outflow is shifted to the following simulation day's
'inflows to it's downstream subbasin. A higher causes greater
'flow attenuation.

TodaysFractionalFlow As Double 'This is not read from the REGIMES
'table but calculated as = 1 - NextDayFractionalFlow. It is the
'fraction of outflow which appears in the downstream subbasin on
'the same simulation day.

End Type

'The following type is for any (optional) lake data in the model.
'The array LakeTable is dimensioned with this type, using two
'indices. All the lake data is read into this one array.
''The 1st is the lake number. The 2nd index is the row
'number of the that lake's table -- the table for each lakes
'is composed of various rows. For example LakeTable(3, 8).VolumeM3
'would the the Volume of the the 8th row from the 3rd lake's table.
Private Type LakeTableType

VolumeM3 As Double 'Storage volume
AreaM2 As Double 'surface area at the storage volume above
FlowM3PD As Double 'flow downstream in cubic meters per day at

'this storage volume

End Type

Dim WS() As WaterShedType 'WS() Will be ReDim'd as 1 dim array
'where the index is the Subbasin sequence number (SubBSeq)
'from the model's WSHEDS table, as explained before in the
'Private Type WaterShedType declaration.

Dim ST() As SimulTraceType 'ST() Will be ReDim'd as 2 dim array
'as explained before in the
'Private Type SimulTraceType declaration

Dim GageArray() As GageType 'GageArray() Will be ReDim'd as 2 dim array
'as explained earlier in the
'Private Type GageType declaration

Dim GageList() As String 'Has the names of the gages. These are set in
'GetPrecipGages. This array is ReDim'd in GetPrecipGages. The index
'is program's internal Gage ID assigned in GetPrecipGages.

Dim LakeTable() As LakeTableType 'Contains the lake tables as
'described in the Private Type LakeTableType declaration

Dim NumPrecipGages As Integer 'The total number of precip gages used for the simulation

Dim EvapArrayM() As Single ' Stores the daily evaporation in meters
'With the array dimension the date offset = CurrentDate - StartDate

Dim InputStream() As Single 'Stores the Cubic Meters per day of flow of each input stream.
' 1st array dim is InputStream ID, 2nd Array dim is\
'the date offset = CurrentDate - StartDate
'a typical reference might look like: InputStream(StreamID, CurrentDate - StartDate)

Dim RegimeRegionArray() As RegimeType 'Will be ReDim'd as explained
'earlier in the Private Type RegimeType declaration

Dim NumRegions As Long 'The number of (geographic) regions. This is
'set in ReadRegimeParams

Dim LongestLakeTableSize As Integer 'The greatest number of rows
'used by any lake in the lake table; used to ReDim the LakeTable()
'array

 5

Dim STArrayDim1 As Long '1st dimension of ST() SimulTraceType Array
'see comments on the Private Type SimulTraceType declaration

Dim ModelWshedTable As String 'The table name of the model's watershed
'table. This the table for the restored watersheds.
'This is assigned in SetModelTableNames.

Dim ModelBaseCaseWShedTable As String 'The table name of the model's
'unrestored watershed table. This is assigned in SetModelTableNames

Dim ModelRiverTable As String 'The table name of the model's river table.
' This is assigned in SetModelTableNames. This table is used during
'model generation, not during the simulation runs.

Dim ModelRegimeTable As String 'The table name of the model's regime table.
'This is assigned in SetModelTableNames. This table contains all the
'parameters to use, by Regime and Region.

Dim StartDate As Date 'The simulation start date, which is read from
'The launch screen, or set to a default value. It is set in
'GetSimulLength

Dim EndDate As Date 'Simulation end date. Set in GetSimulLength.

Dim RestorationTransitionDate As Date 'That date at which to convert to
'the restored Watershed information.
'This is set in InitializeExternalVariables

Dim SimulDays As Long ' number of days the simulation will last, equal
'to EndDate - StartDate

Dim NumSubBasins As Long 'The number of subbasins, from the watershed
'table of the model.

'The following four variables are set in ReadInWaterSheds, and
'are based on summary totals of information from the model's watershed
'table.

Dim TotalIntactDepStorOnRiverM3 As Double 'The total volume of intact
'depressional storage which intersects the river.

Dim TotalIntactDepStorOffRiverM3 As Double

Dim TotalNonDepAreaOnRiverM2 As Double
Dim TotalNonDepAreaOffRiverM2 As Double

Dim TotalOutletOutflowM3 As Double

Dim ExtraInflowTable() As String
Dim rstExtraInflowTable() As DAO.Recordset

Dim ExtraOutflowTable() As String
Dim rstExtraOutflowTable() As DAO.Recordset

Dim NumExtraInflowTables As Integer
Dim NumExtraOutflowTables As Integer

Option Compare Database 'Sets sort order for string comparisons; not used here

Private Sub CreateBoxModelInput_Click()

Dim dbs As DAO.Database
Dim rstColumnList As DAO.Recordset
Dim rstRest As DAO.Recordset
Dim rstSimul As DAO.Recordset
Dim rstBoxModel As DAO.Recordset
Dim qdf As DAO.QueryDef

 6

Dim fldLoop As DAO.Field
Dim strSQL As String
Dim strUnion As String
Dim ExtractionTable As String
Dim FirstRecord As Boolean
Dim QueryName1() As String, QueryName2() As String
Dim NumOutputColumns As Integer, ColumnNumber As Integer
Dim C As String, WriteString As String

Set dbs = CurrentDb

' DeleteTableWithoutWarning ("BoxModelInpTable")

' strSQL = "CREATE TABLE BoxModelInpTable " & _
' "([Year] integer, " & _
' "[Month] integer, " & _
' "[ColumnName] char(15), " & _
' "[Simul] char(3), " & _
' "[RestorationLevel] char(1), " & _
' "[AcreFt] single, " & _
' "PRIMARY KEY ([Year], [Month], [ColumnName], [Simul], [RestorationLevel]));"
' Set qdf = dbs.CreateQueryDef("", strSQL)
' qdf.Execute
' dbs.TableDefs.Refresh

strSQL = "DELETE * FROM BoxModelInpTable;"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute
dbs.TableDefs.Refresh

strSQL = "SELECT * FROM BoxModelOutputColumns ORDER BY ColumnNo;"
Set rstColumnList = dbs.OpenRecordset(strSQL)
rstColumnList.MoveLast
NumOutputColumns = rstColumnList.RecordCount
rstColumnList.MoveFirst

ReDim QueryName1(NumOutputColumns) As String
ReDim QueryName2(NumOutputColumns) As String

ColumnNumber = 1
Do Until rstColumnList.EOF

strSQL = "SELECT Simul FROM SimulList GROUP BY Simul ORDER BY Simul"
Set rstSimul = dbs.OpenRecordset(strSQL)

strSQL = "SELECT RestorationLevel FROM RestorationLevels GROUP BY RestorationLevel
ORDER BY RestorationLevel"

Set rstRest = dbs.OpenRecordset(strSQL)

rstSimul.MoveFirst
FirstRecord = True
Do Until rstSimul.EOF

If rstSimul![Simul] <> "COMP" Then
rstRest.MoveFirst
If rstSimul![Simul] = "006" Then

FirstRecord = True
strUnion = strUnion & ";"
QueryName1(ColumnNumber) = "TempBoxModelInput" &

rstColumnList![ColumnName] & "_Part1"
DeleteQueryWithoutWarning (QueryName1(ColumnNumber))
Set qdf = dbs.CreateQueryDef(QueryName1(ColumnNumber), strUnion)
dbs.QueryDefs.Refresh
strUnion = ""

End If
Do Until rstRest.EOF

' txtSimulation.Value = rstSimul![Simul]
' txtRestorationLevel.Value = rstRest![RestorationLevel]

 7

ExtractionTable = rstColumnList![TablePrefix] & "_" & rstSimul![Simul]
& "_" & rstRest![RestorationLevel]

Me.Repaint
If FirstRecord = True Then

strUnion = "SELECT ALL "
Else

strUnion = strUnion & Chr$(13) + Chr$(10) & "UNION ALL SELECT ALL "
End If
strUnion = strUnion & "'" & rstColumnList![ColumnName] & "'" & " AS

ColumnName, "
strUnion = strUnion & "'" & rstSimul![Simul] & "'" & " AS Simul, " & _

"'" & rstRest![RestorationLevel] & "'" & " AS
RestorationLevel, "

strUnion = strUnion & "[Date], [CMPD] FROM " & ExtractionTable & " "
If rstSimul![Simul] = "001" And rstRest![RestorationLevel] = "A" Then

'for the 001/A simul gives all dates, for others only gives after
10/1/2000

Else
strUnion = strUnion & "WHERE [Date] >= #10/1/2000#"

End If
rstRest.MoveNext
FirstRecord = False

Loop
End If
rstSimul.MoveNext

Loop
FirstRecord = True
strUnion = strUnion & ";"
QueryName2(ColumnNumber) = "TempBoxModelInput" & rstColumnList![ColumnName] &

"_Part2"
DeleteQueryWithoutWarning (QueryName2(ColumnNumber))
Set qdf = dbs.CreateQueryDef(QueryName2(ColumnNumber), strUnion)
dbs.QueryDefs.Refresh

StatusBox.Value = "Adding to box model input information from " &
rstColumnList![ColumnNo] & ". " & rstColumnList![ColumnName]

Me.Repaint

'Add the data from query #1 to BoxModelInpTable
strSQL = "INSERT INTO BoxModelInpTable ([Year], [Month], ColumnName, Simul,

RestorationLevel, AcreFt) " & _
"SELECT Year, Month, ColumnName, Simul, RestorationLevel,

Sum([CMPD])/1233.48 AS AcreFt " & _
"FROM " & QueryName1(ColumnNumber) & " AS ModelOut INNER JOIN

DateListYearMonth ON ModelOut.Date = DateListYearMonth.Date " & _
"GROUP BY Year, Month, ColumnName, Simul, RestorationLevel;"

Debug.Print strSQL
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute

'Add the date from query #2 to BoxModelInpTable
strSQL = "INSERT INTO BoxModelInpTable ([Year], [Month], ColumnName, Simul,

RestorationLevel, AcreFt) " & _
"SELECT Year, Month, ColumnName, Simul, RestorationLevel,

Sum([CMPD])/1233.48 AS AcreFt " & _
"FROM " & QueryName2(ColumnNumber) & " AS ModelOut INNER JOIN

DateListYearMonth ON ModelOut.Date = DateListYearMonth.Date " & _
"GROUP BY Year, Month, ColumnName, Simul, RestorationLevel;"

Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute

DeleteQueryWithoutWarning (QueryName1(ColumnNumber))
DeleteQueryWithoutWarning (QueryName2(ColumnNumber))

strUnion = ""

rstColumnList.MoveNext

 8

ColumnNumber = ColumnNumber + 1
Loop

Debug.Print strUnion
rstRest.Close
rstSimul.Close

strSQL = "SELECT * FROM ReportBoxModelInputXTab;"
Set rstBoxModel = dbs.OpenRecordset(strSQL)
rstBoxModel.MoveFirst

Open "BOXMODELINPUT.TXT" For Output As #1

Print #1, "#Devils Lake Upper Basin Simulated Flows in Acre-Feet"
Print #1, "#WEST Consultants, Inc."
Print #1, "#PRINET V1.0, Data extracted on " & Date & " " & Time
Print #1, "#Restoration Level A: Existing Conditions, B: 25%, C:50%, D:75%, E:100%"
Print #1, "#Restoration begins on 10/1/2002 for all simulations"
Print #1, "#Only drained depressions >= 0.5 feet average depth candidates for

restoration"
Print #1, "#Column headings in the next row"

WriteString = "#"
For Each fldLoop In rstBoxModel.Fields ' writes out the titles

WriteString = WriteString & fldLoop.Name & " "
Next fldLoop

Print #1, WriteString

Do Until rstBoxModel.EOF
WriteString = ""
For Each fldLoop In rstBoxModel.Fields

If fldLoop.Name < "99" Then 'for the numeric value fields
WriteString = WriteString & Format(rstBoxModel.Fields(fldLoop.Name), "0.#")

& " "
Else 'for the row identifiers

WriteString = WriteString + CStr(rstBoxModel.Fields(fldLoop.Name)) & " "
End If

Next fldLoop
Print #1, WriteString
rstBoxModel.MoveNext

Loop

Close #1

dbs.Close
MsgBox ("Done")

End Sub

Private Sub CreateRestoration_Click()

Dim dbs As DAO.Database
Dim rst As DAO.Recordset
Dim qdf As DAO.QueryDef
Dim tdf As DAO.TableDef
Dim fld As DAO.Field
Dim rstDepTable As DAO.Recordset
Dim rstRest As DAO.Recordset
Dim strSQL As String
Dim ImpPrefix As String
Dim ImpDepTableBase As String
Dim ImpDepTable As String
Dim TotalRestorableVolM3 As Double
Dim TotalRestorableAreaM2 As Double

 9

Dim RunningTotalVolM3 As Double
Dim RunningTotalAreaM2 As Double

Set dbs = CurrentDb

ImpPrefix = "IMP_" & txtWaterShed.Value & "_"
ImpDepTableBase = ImpPrefix & "DEPTABLE" & "_A"

'Calculate the restorable depressional volume and area
strSQL = "SELECT Sum(VOLM3) AS SumOfVOLM3, Sum(AREA_M2) AS SumOfAREA_M2 " & _

"FROM " & ImpDepTableBase & " " & _
"WHERE ([DEPTYPE123]=2) AND ([DEPTH_M] >= 0.1524);"

Set rst = dbs.OpenRecordset(strSQL)
Debug.Print strSQL
rst.MoveFirst
TotalRestorableVolM3 = rst![SumOfVOLM3]
TotalRestorableAreaM2 = rst![SumOfAREA_M2]
rst.Close

Set tdf = dbs.TableDefs(ImpDepTableBase)
If Not IsField(tdf, "RandomNum") Then

Set fld = tdf.CreateField("RandomNum", dbDouble)
tdf.Fields.Append fld

End If

If Not IsField(tdf, "RunningTotalFracVol") Then
Set fld = tdf.CreateField("RunningTotalFracVol", dbDouble)
tdf.Fields.Append fld

End If

If Not IsField(tdf, "RunningTotalFracArea") Then
Set fld = tdf.CreateField("RunningTotalFracArea", dbDouble)
tdf.Fields.Append fld

End If
dbs.TableDefs.Refresh

' Open the "A" imported depression tables and clear all random numbers
strSQL = "SELECT * FROM " & ImpDepTableBase & ";"
Set rstDepTable = dbs.OpenRecordset(strSQL)
rstDepTable.MoveFirst
Do Until rstDepTable.EOF

rstDepTable.Edit
rstDepTable![RandomNum] = Null
rstDepTable.Update
rstDepTable.MoveNext

Loop
rstDepTable.Close

' Open the "A" imported depression tables and assign random numbers to the restoration
candidates

strSQL = "SELECT * FROM " & ImpDepTableBase & " " & _
"WHERE ([DEPTYPE123]=2) AND ([DEPTH_M] >= 0.1524);"

Set rstDepTable = dbs.OpenRecordset(strSQL)
rstDepTable.MoveFirst
Do Until rstDepTable.EOF

rstDepTable.Edit
rstDepTable![RandomNum] = Rnd()
rstDepTable.Update
rstDepTable.MoveNext

Loop
rstDepTable.Close

' Extract the records of the imported depression table, selecting only candidates for
restoration, and sort by the random number

' The depressions will be restored in the order the appear in this query
strSQL = "SELECT * FROM " & ImpDepTableBase & " " & _

"WHERE(DEPTYPE123) = 2 And (DEPTH_M) >= 0.1524 ORDER BY RandomNum;"

 10

Set rstDepTable = dbs.OpenRecordset(strSQL)
rstDepTable.MoveFirst

RunningTotalVolM3 = 0#
RunningTotalAreaM2 = 0#

With rstDepTable
Do Until .EOF

RunningTotalVolM3 = RunningTotalVolM3 + ![VOLM3]
RunningTotalAreaM2 = RunningTotalAreaM2 + ![AREA_M2]
.Edit
![RunningTotalFracVol] = RunningTotalVolM3 / TotalRestorableVolM3
![RunningTotalFracArea] = RunningTotalAreaM2 / TotalRestorableAreaM2
.Update
.MoveNext

Loop
End With
rstDepTable.Close

strSQL = "SELECT * FROM RestorationLevels ORDER BY RestorationLevel"
Set rstRest = dbs.OpenRecordset(strSQL)

rstRest.MoveFirst
Do Until rstRest.EOF

If rstRest![RestorationLevel] <> "A" Then
txtRestorationLevel.Value = rstRest![RestorationLevel]
Me.Repaint
ImpDepTable = ImpPrefix & "DEPTABLE" & "_" & txtRestorationLevel.Value
DeleteTableWithoutWarning (ImpDepTable)
strSQL = "SELECT POLYID, DEPTH_M, AREA_M2, DEPTYPE123, VOLM3, INTERRIV INTO " &

ImpDepTable & " " & _
"FROM " & ImpDepTableBase & ";"

Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute
dbs.TableDefs.Refresh

strSQL = "UPDATE " & ImpDepTableBase & " AS BASE INNER JOIN " & ImpDepTable & "
AS NEW ON " & _

"BASE.POLYID = NEW.POLYID SET NEW.DEPTYPE123 = 1 " & _
"WHERE (((NEW.DEPTYPE123)=2) AND ((BASE.RunningTotalFracVol)<= " &

rstRest![FractionRestorationVol] & "));"
Debug.Print strSQL
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute
Call CreateModel_Click

Call SetModelTableNames
strSQL = "UPDATE " & ModelBaseCaseWShedTable & " AS BASE INNER JOIN " &

ModelWshedTable & " AS NEW ON BASE.SubBSeq = NEW.SubBSeq SET NEW.InitWaterM3 =
BASE.InitWaterM3, NEW.InputStreamTable = [BASE].[InputStreamTable], NEW.LakeID =
[BASE].[LakeID], NEW.ExtraInflowID = [BASE].[ExtraInflowID], NEW.ExtraOutflowID =
[BASE].[ExtraOutflowID];"

Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute

End If
rstRest.MoveNext

Loop

rstRest.Close
dbs.Close

txtRestorationLevel.Value = "A"

 11

End Sub

Private Sub RunAllSimulAllModels_Click()
' Runs all future simulations for all models that are checked in the WaterShedList

table

Dim dbs As DAO.Database
Dim rstModel As DAO.Recordset
Dim strSQL As String

Set dbs = CurrentDb

strSQL = "SELECT * FROM WaterShedList ORDER BY ProcessOrder;"
Set rstModel = dbs.OpenRecordset(strSQL)
rstModel.MoveFirst

Do Until rstModel.EOF
If rstModel![ToProcess] = True Then

txtWaterShed.Value = rstModel![Watershed]
Me.Repaint
Call RunAllSimuls_Click

End If
rstModel.MoveNext

Loop

rstModel.Close
dbs.Close

End Sub

Private Sub RunAllSimuls_Click()

Dim dbs As DAO.Database
Dim rstRest As DAO.Recordset
Dim rstSimul As DAO.Recordset
Dim strSQL As String

Set dbs = CurrentDb

strSQL = "SELECT Simul FROM SimulList GROUP BY Simul ORDER BY Simul"
Set rstSimul = dbs.OpenRecordset(strSQL)

strSQL = "SELECT RestorationLevel FROM RestorationLevels GROUP BY RestorationLevel
ORDER BY RestorationLevel"

Set rstRest = dbs.OpenRecordset(strSQL)

rstSimul.MoveFirst
Do Until rstSimul.EOF

If rstSimul![Simul] <> "COMP" Then
rstRest.MoveFirst
Do Until rstRest.EOF

txtSimulation.Value = rstSimul![Simul]
txtRestorationLevel.Value = rstRest![RestorationLevel]
Me.Repaint
Call RunSimul_Click
rstRest.MoveNext

Loop
End If
rstSimul.MoveNext

Loop

rstRest.Close
rstSimul.Close
dbs.Close

End Sub

 12

Private Sub RunSimul_Click()

Call InitializeExternalVariables 'Initializes external variables
Call SetModelTableNames 'gets the table names for the model
SimulDays = GetSimulLength 'sets the simulation length
NumSubBasins = ReadInWaterSheds(ModelBaseCaseWShedTable)

'reads in the watersheds for the base case (unrestored) scenario

Call GetLakes 'Loads the lakes table into memory
Call GetPrecipGages 'Loads the needed precip gages into memeory
Call GetEvap 'loads the evaporation into memory
Call ReadRegimeParams 'reads in the regime tables
Call SetSeasonBreaks 'sets the seasons breaks
Call CreateTraceTable 'creates an empty SimulTrace table for debugging
If LaunchSimulation() = False Then 'Launches the simulation

MsgBox ("Simulation Not Run")
End If
Call CreateOutputTable 'copies the simulation results to an output table

'specific to the model, simulation run, and restoration level

'MsgBox ("Done")

End Sub

Private Function ReadInWaterSheds(WatershedTable As String)
'reads in the watershed information found in the argument table
' WatershedTable

Dim dbs As DAO.Database
Dim rst As DAO.Recordset 'used to identify the watershed table's recordset
Dim rstCountInputStreams As DAO.Recordset 'used to identify the recordset used

'to count the number of input streams in the model

Dim rstInputStream As DAO.Recordset 'used to identify input stream recordsets
Dim I As Long 'Index number for WS() array; represents SubBSeq, the subbasin

'sequence number

Dim strSQL As String 'used to create SQL queries
Dim strSQLInputStream As String 'SQL statement to retrieve input streams
Dim TableName As String 'used to hold table names for use in queries
Dim NumInputStreams As Long 'The number of input streams into the model
Dim CurrentInputStream As Long 'The current input stream

Dim qdf As DAO.QueryDef

NumInputStreams = 0
CurrentInputStream = 1

StatusBox.Value = "Reading In Watersheds"
Me.Repaint

Set dbs = CurrentDb

' A query which extracts only the input streams into the watershed
strSQL = "SELECT InputStreamTable FROM " & WatershedTable & " WHERE (InputStreamTable) Is
Not Null ORDER BY InputStreamTable;"
Set rstCountInputStreams = dbs.OpenRecordset(strSQL)
If rstCountInputStreams.EOF Then 'if there are no input streams

NumInputStreams = 0 'set number of input streams to zero
Else 'otherwise move to end of table and count how many there are

rstCountInputStreams.MoveLast
NumInputStreams = rstCountInputStreams.RecordCount

End If
rstCountInputStreams.Close

ReDim InputStream(NumInputStreams, SimulDays) As Single

 13

'The following query extracts the entire watershed table for the model
strSQL = "SELECT * FROM " & WatershedTable & " ORDER BY SubBSeq;"
Set rst = dbs.OpenRecordset(strSQL)

rst.MoveLast
NumSubBasins = rst.RecordCount 'set the number of subbasins based on

'how many records were found in the model's watershed table

If NumSubBasins = 0 Then
MsgBox ("No Watersheds found in table")
Resume Exit_ReadInWaterSheds

End If

' The following set the total intact depressional storage on and
' off river equal to zero
TotalIntactDepStorOnRiverM3 = 0#
TotalIntactDepStorOffRiverM3 = 0#

' The following set the total non depressional surface areas to zero
'(e.g. soil; consists of all non-depressional surface area plus
' the surface are of drained depressions
TotalNonDepAreaOnRiverM2 = 0#
TotalNonDepAreaOffRiverM2 = 0#

' The following dimensions the WS() array to hold the information from
' each of the subwatersheds of the model
ReDim WS(NumSubBasins) As WaterShedType

' Read in the model's WSHED Table
rst.MoveFirst
I = 1
Do Until rst.EOF

WS(I).DepAreaOnRiverM2 = rst![DepAreaOnRiverM2]
WS(I).DepVolOnRiverM3 = rst![DepVolOnRiverM3]
WS(I).DepAreaOffRiverM2 = rst![DepAreaOffRiverM2]
WS(I).DepVolOffRiverM3 = rst![DepVolOffRiverM3]

WS(I).DSSubBSeq = rst![DSSubBSeq]
WS(I).InitWaterM3 = rst![InitWaterM3]
If Not IsNull(rst![InputStreamTable]) Then

WS(I).InputStreamTable = rst![InputStreamTable]
Else 'sets string equal to empty if there is no input stream

WS(I).InputStreamTable = ""
End If
WS(I).PrecipGage = rst![PrecipGage]
WS(I).Region = rst![Region]
WS(I).WSAreaNonDepOnRiverM2 = rst![WSAreaNonDepOnRiverM2]
WS(I).WSAreaNonDepOffRiverM2 = rst![WSAreaNonDepOffRiverM2]
If Not IsNull(rst![ExtraInflowID]) Then 'these are inflow tables to be written out for

the model
'at a particular subwatershed; ExtraInflowID is the table name
WS(I).ExtraInflowID = rst![ExtraInflowID]

End If
If (Not IsNull(rst![ExtraInflowID])) Then 'if there is an output table

NumExtraInflowTables = NumExtraInflowTables + 1 'increment output table count
ExtraInflowTable(NumExtraInflowTables) = GetInflowTableName(txtWaterShed.Value &

"_" & rst![ExtraInflowID])
'set the output table name

DeleteTableWithoutWarning (ExtraInflowTable(NumExtraInflowTables))
'deletes the table if it already exits

' creates a SQL make-table to query to create the table
strSQL = "CREATE TABLE " & ExtraInflowTable(NumExtraInflowTables) & " " & _
"([Date] date, " & _
"[CMPD] single, " & _

 14

"PRIMARY KEY ([Date]));"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute
dbs.TableDefs.Refresh
Set rstExtraInflowTable(NumExtraInflowTables) =

dbs.OpenRecordset(ExtraInflowTable(NumExtraInflowTables))
' assigns the output table handle to the rstExtraInflowTable array

WS(I).ExtraInflowIndex = NumExtraInflowTables
'assigns an index number to the output table; this is used to retrieve
'the just defined table handle

Else 'there is no output table for this subwatershed
WS(I).ExtraInflowIndex = 0

End If

If Not IsNull(rst![ExtraOutflowID]) Then 'these are outflow output tables for the model
'at a particular subwatershed; ExtraOutflowID is the table name
WS(I).ExtraOutflowID = rst![ExtraOutflowID]

End If

If (Not IsNull(rst![ExtraOutflowID])) Then 'if there is an outflow table
NumExtraOutflowTables = NumExtraOutflowTables + 1 'increment outflow output table

count
ExtraOutflowTable(NumExtraOutflowTables) = GetOutflowTableName(txtWaterShed.Value &

"_" & rst![ExtraOutflowID])
'set the output table name

DeleteTableWithoutWarning (ExtraOutflowTable(NumExtraOutflowTables))
'deletes the table if it already exits

' creates a SQL make-table to query to create the table
strSQL = "CREATE TABLE " & ExtraOutflowTable(NumExtraOutflowTables) & " " & _
"([Date] date, " & _
"[CMPD] single, " & _
"PRIMARY KEY ([Date]));"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute
dbs.TableDefs.Refresh
Set rstExtraOutflowTable(NumExtraOutflowTables) =

dbs.OpenRecordset(ExtraOutflowTable(NumExtraOutflowTables))
' assigns the outflow output table handle to the rstExtraInflowTable array

WS(I).ExtraOutflowIndex = NumExtraOutflowTables
'assigns an index number to the output table; this is used to retrieve
'the just defined table handle

Else 'there is no output table for this subwatershed
WS(I).ExtraOutflowIndex = 0

End If

If (Not IsNull(rst![LakeID])) Then 'there is a lake associated with this subwatershed
WS(I).LakeID = rst![LakeID] 'assign the Lake ID
WS(I).DepVolOnRiverM3 = 0# 'set to zero because overflow is based on table lookup

Else 'there is no lake assigned to this subwatershed
WS(I).LakeID = 0

End If

WS(I).SubBSeq = rst![SubBSeq]

If I <> rst![SubBSeq] Then 'verifies that the subbasin sequence numbers
'start with 1 and are in sequential order

MsgBox ("Watershed Seq# " & rst![SubBSeq] & " is out of sequence")
End If

'The following update the Totals of Depressional Storage and non-depressional area

 15

TotalIntactDepStorOnRiverM3 = TotalIntactDepStorOnRiverM3 + rst![DepVolOnRiverM3]
TotalIntactDepStorOffRiverM3 = TotalIntactDepStorOffRiverM3 + rst![DepVolOffRiverM3]
TotalNonDepAreaOnRiverM2 = TotalNonDepAreaOnRiverM2 + WS(I).WSAreaNonDepOnRiverM2
TotalNonDepAreaOffRiverM2 = TotalNonDepAreaOffRiverM2 + WS(I).WSAreaNonDepOffRiverM2

' read in the input stream, if any, from the appropriate table
If WS(I).InputStreamTable = "" Then

WS(I).VBInputStreamID = 0
Else

TableName = GetOutputTableName(rst![InputStreamTable])

' The following query extracts the input stream information
strSQLInputStream = "SELECT [Date], [CMPD] FROM " & TableName & _

" WHERE ((Date) >= #" & StartDate & "# And (Date) <= #" & EndDate & "#)
ORDER BY Date;"

Set rstInputStream = dbs.OpenRecordset(strSQLInputStream)
rstInputStream.MoveLast

If rstInputStream.RecordCount < StartDate - EndDate + 1 Then
'If true the extracted input stream record does have enought records
'to span the complete set of simulation dates

MsgBox ("The input stream table " & rst![InputStreamTable] & " does not have
enough records for the simulation dates.")

End If

rstInputStream.MoveFirst
If rstInputStream![Date] <> StartDate Then

'If true the extracted input stream record does not begin at the start date
of

'the simulation
MsgBox ("The input stream table " & rst![InputStreamTable] & " has an incorrect

start date for the start date of this simul")
End If

'Now need to read the input stream into memory and assign it a VBInputStreamID
WS(I).VBInputStreamID = CurrentInputStream 'assigns an ID
rstInputStream.MoveFirst
Do Until rstInputStream.EOF

InputStream(CurrentInputStream, CLng(rstInputStream![Date] - StartDate)) =
rstInputStream![CMPD]

'copies the input stream into memory one day at a time

rstInputStream.MoveNext
Loop
CurrentInputStream = CurrentInputStream + 1

rstInputStream.Close

End If

rst.MoveNext
I = I + 1
Loop

'Calculate each Watershed's Non Depressional Area as a fraction of the total

For I = 1 To NumSubBasins 'updates the percentage of watershed area that is
'non-depressional (e.g. not intact depressions) as a fraction of the
'total watershed area

WS(I).WSAreaNonDepFractionOfTotal = (WS(I).WSAreaNonDepOnRiverM2 +
WS(I).WSAreaNonDepOffRiverM2) / _

(TotalNonDepAreaOnRiverM2 + TotalNonDepAreaOffRiverM2)

Next I

rst.Close

 16

ReadInWaterSheds = NumSubBasins ' Returns the number of watersheds

Exit_ReadInWaterSheds:
Exit Function

Err_ReadInWaterSheds:
MsgBox Err.Description
Resume Exit_ReadInWaterSheds

End Function
Private Function ReadInRestorationWaterSheds(RestorationWatershedTable As String)

' reads in the needed values for the restored watershed, other data
' from the table is presumed to be identical to the base case watershed

Dim dbs As DAO.Database
Dim rst As DAO.Recordset, rstCountInputStreams As DAO.Recordset, rstInputStream As
DAO.Recordset
Dim I As Long
Dim strSQL As String, strSQLInputStream As String
Dim TableName As String
Dim CurrentInputStream As Long
Dim qdf As DAO.QueryDef

'CurrentInputStream = 1

StatusBox.Value = "Reading In Restoration Watersheds"
Me.Repaint

Set dbs = CurrentDb

' Extracts the all records from the restored watershed table
strSQL = "SELECT * FROM " & RestorationWatershedTable & " ORDER BY SubBSeq;"
Set rst = dbs.OpenRecordset(strSQL)

' verifies the number of watersheds is the same as the base case model
rst.MoveLast
If rst.RecordCount <> NumSubBasins Then

MsgBox ("The Restoration Watershed does not have the same number of watersheds as the
original. Press cntrl-break and stop program.")
End If

' Initializes the totals
TotalIntactDepStorOnRiverM3 = 0#
TotalIntactDepStorOffRiverM3 = 0#
TotalNonDepAreaOnRiverM2 = 0#
TotalNonDepAreaOffRiverM2 = 0#

' Read in the Restoration WSHED values needed
rst.MoveFirst
I = 1
Do Until rst.EOF

WS(I).DepAreaOnRiverM2 = rst![DepAreaOnRiverM2]
WS(I).DepVolOnRiverM3 = rst![DepVolOnRiverM3]
WS(I).DepAreaOffRiverM2 = rst![DepAreaOffRiverM2]
WS(I).DepVolOffRiverM3 = rst![DepVolOffRiverM3]

If WS(I).DSSubBSeq <> rst![DSSubBSeq] Then 'verifies that the downstream
'sequence numbers for each watershed are identical with the base case model
MsgBox ("There is a difference in watershed sequencing the in the restoration

watershed. Hit Cntrl-break to stop.")
End If

If WS(I).PrecipGage <> rst![PrecipGage] Then 'verifies that the precip
'gage is the same for each sub watershed

 17

MsgBox ("There is a difference in precip gage assignments in the restoration
watershed. Hit cntrl-break to stop.")

End If
If WS(I).Region <> rst![Region] Then 'verifies that the region numbers

'are the same for each subwatershed
MsgBox ("There is a difference in region assignment in the restoration watershed.

Hit cntrl-break to stop.")
End If

WS(I).WSAreaNonDepOnRiverM2 = rst![WSAreaNonDepOnRiverM2]
WS(I).WSAreaNonDepOffRiverM2 = rst![WSAreaNonDepOffRiverM2]

If (Not IsNull(rst![LakeID])) Then 'verfies that LakeID assignements are the same as
base case

If WS(I).LakeID <> rst![LakeID] Then
MsgBox ("There is a difference in lake assigments in the restoration watershed.

Hit cntrl-break to stop.")
End If

End If

' verifies that the Subbasin sequence number is the same as base case model
If WS(I).SubBSeq <> rst![SubBSeq] Then

MsgBox ("The sub basin sequencing is different in the restoration watershed. Hit
cntrl-break to stop.")

End If

If I <> rst![SubBSeq] Then 'verifies that sub basin numbers are sequential
MsgBox ("Watershed Seq# " & rst![SubBSeq] & " is out of sequence")

End If

' Updates totals
TotalIntactDepStorOnRiverM3 = TotalIntactDepStorOnRiverM3 + rst![DepVolOnRiverM3]
TotalIntactDepStorOffRiverM3 = TotalIntactDepStorOffRiverM3 + rst![DepVolOffRiverM3]

TotalNonDepAreaOnRiverM2 = TotalNonDepAreaOnRiverM2 + WS(I).WSAreaNonDepOnRiverM2
TotalNonDepAreaOffRiverM2 = TotalNonDepAreaOffRiverM2 + WS(I).WSAreaNonDepOffRiverM2

rst.MoveNext
I = I + 1
Loop

'Calculate each Watershed's Non Depressional Area as a fraction of the total

For I = 1 To NumSubBasins

WS(I).WSAreaNonDepFractionOfTotal = (WS(I).WSAreaNonDepOnRiverM2 +
WS(I).WSAreaNonDepOffRiverM2) / _

(TotalNonDepAreaOnRiverM2 + TotalNonDepAreaOffRiverM2)

Next I

rst.Close
dbs.Close

End Function

Private Function Max(A As Variant, B As Variant)
'calculates the maximum of 2 values

On Error GoTo Err_Max

If A > B Then
Max = A

Else
Max = B

End If

 18

Exit_Max:
Exit Function

Err_Max:
MsgBox Err.Description
Resume Exit_Max

End Function

Private Sub CreateTraceTable()
' Create the trace table used for debugging only
' The trace table is only used if the radio button for this
' selection is selected on the application's form

On Error GoTo Err_CreateTraceTable

Dim dbs As DAO.Database
Dim qdf As DAO.QueryDef

Dim strSQL As String

Set dbs = CurrentDb

dbs.TableDefs.Delete "SimulTrace"

' empties the template table
strSQL = "DELETE * FROM SimulTraceTemplate;"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute

' creates the SimulTrace table from the template
strSQL = "SELECT SimulTraceTemplate.* INTO SimulTrace " & _

"FROM SimulTraceTemplate;"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute

dbs.Close

Exit_CreateTraceTable:
Exit Sub

Err_CreateTraceTable:
MsgBox Err.Description
Resume Exit_CreateTraceTable

End Sub

Private Function LaunchSimulation()

' On Error GoTo Err_LaunchSimulation

Dim dbs As DAO.Database
Dim qdf As DAO.QueryDef
Dim CurrentDate As Date ' the current simulation date
Dim rstSimulTrace As DAO.Recordset ' to identify the trace table used for debugging
Dim rstOutput As DAO.Recordset ' to identify the output table for the model
Dim ArrayRow As Long 'Where in the 1st dim of ST() array the simulation is currently
located
Dim SubB As Long ' An identifer for the Sub basin sequence number used as an index

'in the WS() array.

Dim Regime As Long ' The regime number (set to either 1 or 2)
Dim strSQL As String
Dim StartingGlobalWaterM3 As Double 'used to track total water in the system at the

'beginning of the simulation -- for debugging only

 19

Dim EndingGlobalWaterM3 As Double 'used to tract total water in the system at the
'end of the simulation -- for debugging only

Dim DateZeroOffset 'A specifice of days from the current simulation date
'all ST() records for this date are to be initialized

Dim TotalDepVolM3 As Double 'the total depressional volume a subwatershed

Dim I As Long

Set dbs = CurrentDb

' opens the trace table for output; this table is used for debugging
Set rstSimulTrace = dbs.OpenRecordset("SimulTrace")

' this query creates the SimulOutput table,
' the primary table that the program
' outputs the outlet flow as well as several other daily values to
strSQL = "CREATE TABLE SimulOutput " & _

"([Date] date, " & _
"[CMPD] single, " & _
"[StorageVolUtil] single, " & _
"[SoilCapacityFraction] single, " & _
"[PrecipM3] single, " & _
"[LostToETM3] single, " & _
"[LostToEvapM3] single, " & _
"[LostToPercM3] single, " & _
"PRIMARY KEY ([Date]));"

' Deletes the SimulOutputTable if it already exists
If DoesObjectExist("Tables", "SimulOutput") <> "" Then

DoCmd.DeleteObject acTable, "SimulOutput"
End If

' run the create-table query
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute

' opens the SimulOutput table
Set rstOutput = dbs.OpenRecordset("SimulOutput")

DateZeroOffset = 2 'sets the offset number of days; this number of days
'away will be zeroed out in the ST() array in preparation to receive
' new data

STArrayDim1 = DateZeroOffset + 1 ' The dimension of the ST() array
ReDim ST(STArrayDim1 - 1, NumSubBasins) 'Dimensions the ST() array based

' the required number of days that need to be held in memory
' (the 1st index) and the number of subbasins (2nd index)

'Set up first Period Initial Values
ArrayRow = CLng(StartDate) Mod STArrayDim1 'This sets which 1st indext to use

'in the ST() array; it cycles through the array based on the current date

For SubB = 1 To NumSubBasins 'Initializes the ST array for the 1st period
'of the model
Regime = GageArray(WS(SubB).VBGageID, StartDate - StartDate).Regime

'sets the regime based on the gage of the subwatershed and the
'start date of the simulation

TotalDepVolM3 = WS(SubB).DepVolOnRiverM3 + WS(SubB).DepVolOffRiverM3
'the total depressional volume of the watershed; used in the following
' if ... then statement

If (TotalDepVolM3) > 0# Then 'there is water in the depresions
'the following proportions out any initial water
'between the on-river and off-river depressions based on their

 20

'storage capacities

ST(ArrayRow, SubB).StartDepStorOnRiverM3 = _
WS(SubB).InitWaterM3 * WS(SubB).DepVolOnRiverM3 / TotalDepVolM3

ST(ArrayRow, SubB).StartDepStorOffRiverM3 = _
WS(SubB).InitWaterM3 * WS(SubB).DepVolOffRiverM3 / TotalDepVolM3

Else 'sets initial depressional water equal to zero
ST(ArrayRow, SubB).StartDepStorOnRiverM3 = 0#
ST(ArrayRow, SubB).StartDepStorOffRiverM3 = 0#

End If

ST(ArrayRow, SubB).StartSoilCapM = RegimeRegionArray(Regime,
WS(SubB).Region).InitialSoilCapM

'sets initial soil capacity based on the regime (of the simulation start date)
'and the region the subwatershed is assigned to

StartingGlobalWaterM3 = StartingGlobalWaterM3 + ST(ArrayRow,
SubB).StartDepStorOnRiverM3 + _

ST(ArrayRow, SubB).StartDepStorOffRiverM3 - ST(ArrayRow, SubB).StartSoilCapM * _
(WS(SubB).WSAreaNonDepOnRiverM2 + WS(SubB).WSAreaNonDepOffRiverM2)

Next SubB

For CurrentDate = StartDate To EndDate
StatusBox.Value = "Simulation Date = " & CurrentDate
Me.Repaint
If CurrentDate = RestorationTransitionDate Then

Call ReadInRestorationWaterSheds(ModelWshedTable)
End If
ArrayRow = CLng(CurrentDate) Mod STArrayDim1 'sets which array row of the

'ST() array to use based on the current date

'The following line prepares the ArrayRow that is DateZeroOffset out for data entry
Call InitializeArrayRow((ArrayRow + DateZeroOffset) Mod STArrayDim1, DateAdd("d",

DateZeroOffset, CurrentDate))
For SubB = 0 To NumSubBasins 'Places date values in the ST array for

'each subbasin
ST(ArrayRow, SubB).SimulDate = CurrentDate

Next SubB
Call CalcOneDayFlow(ArrayRow, CurrentDate, rstSimulTrace, rstOutput)

' calls the routine that does the day's calculations

Next CurrentDate

' Closes all extra output tables for the model
For I = 1 To NumExtraInflowTables

rstExtraInflowTable(I).Close
Next I

For I = 1 To NumExtraOutflowTables
rstExtraOutflowTable(I).Close

Next I

rstSimulTrace.Close
rstOutput.Close
dbs.Close

ArrayRow = CLng(EndDate) Mod STArrayDim1
' determines how much total water is in the model at the end of run
' actually gives the water at the beginning of the last day of simulation
' used for debugging and water balance
For SubB = 1 To NumSubBasins

EndingGlobalWaterM3 = EndingGlobalWaterM3 + ST(ArrayRow, SubB).StartDepStorOnRiverM3 _
+ ST(ArrayRow, SubB).StartDepStorOffRiverM3 - ST(ArrayRow, SubB).StartSoilCapM * _
(WS(SubB).WSAreaNonDepOnRiverM2 + WS(SubB).WSAreaNonDepOffRiverM2)

Next SubB

 21

' outputs the water balance; for debugging only
'MsgBox ("Starting Vol = " & StartingGlobalWaterM3 & " M3 and Ending Volume = " &
EndingGlobalWaterM3 & _
' " Outflow = " & TotalOutletOutflowM3 & " M3 Net Increase = " & _
' StartingGlobalWaterM3 - EndingGlobalWaterM3 - TotalOutletOutflowM3)

LaunchSimulation = True

Exit_LaunchSimulation:
Exit Function

Err_LaunchSimulation:
MsgBox Err.Description
Resume Exit_LaunchSimulation

End Function

Private Sub InitializeArrayRow(RowNum As Long, RowDate As Date)
' Initializes the ST() array row to prepare it for data
' entry; these must be initialized because the simulation
' cycles through the ST() every few days

On Error GoTo Err_InitializeArrayRow

Dim SubBSeqCount As Long

For SubBSeqCount = LBound(ST, 2) To UBound(ST, 2)
ST(RowNum, SubBSeqCount).SimulDate = RowDate
ST(RowNum, SubBSeqCount).StartDepStorOnRiverM3 = 0#
ST(RowNum, SubBSeqCount).StartDepStorOffRiverM3 = 0#
ST(RowNum, SubBSeqCount).StartSoilCapM = 0#
ST(RowNum, SubBSeqCount).InflowM3 = 0#
ST(RowNum, SubBSeqCount).OutflowM3 = 0#

Next

Exit_InitializeArrayRow:
Exit Sub

Err_InitializeArrayRow:
MsgBox Err.Description
Resume Exit_InitializeArrayRow

End Sub

Private Sub GetPrecipGages()

'On Error GoTo Err_GetPrecipGages

Dim dbs As DAO.Database
Dim rstNeededGages As DAO.Recordset 'A recordset that simply counts

'the number of gages required based on query

Dim rstPrecipGages As DAO.Recordset 'A recordset with the records from
'the PrecipGage table; a table which contains the cross-reference
'of the gage names as refered to in the watershed table, and the actual
'table names that contain the corresponding data

Dim rstGageData As DAO.Recordset 'Used to open the tables that have the gage
'records and the Snowmelt / Rain calculations

Dim I As Long ' a counter
Dim G As Long ' a counter for the gage number
Dim D As Long ' a counter for the date offset
Dim strSQL As String

 22

StatusBox.Value = "Reading Precip Gage Information"
Me.Repaint

Set dbs = CurrentDb

' The following query extracts a list of the needed gages
' from the model's watershed table
strSQL = "SELECT PrecipGage FROM " & ModelBaseCaseWShedTable & " " & _

"GROUP BY PrecipGage ORDER BY PrecipGage;"
Set rstNeededGages = dbs.OpenRecordset(strSQL)

rstNeededGages.MoveLast
NumPrecipGages = rstNeededGages.RecordCount

' Dimensions the GageArray and GageList arrays
' GageArray contains the Snowmelt + Rain values for each gage for each day
' for the both the actual values (COMP) and for all the future simulations
' the GageList array contains the gage names
ReDim GageArray(1 To NumPrecipGages, SimulDays)
ReDim GageList(NumPrecipGages)

' The following extracts the entire PrecipGages table, the table that has
' the cross reference between the gage name and the tables that have the
' information for each gage
strSQL = "SELECT * FROM PrecipGages;"

Set rstPrecipGages = dbs.OpenRecordset(strSQL)

' Read in the Precip Gages
rstNeededGages.MoveFirst

G = 0
Do Until rstNeededGages.EOF

G = G + 1 'sets the current gage index number
GageList(G) = rstNeededGages![PrecipGage] 'assigns the name of the gage

' to the GageList() array

' locate the required gage in the PrecipGages table
rstPrecipGages.FindFirst ("[PrecipGage] = '" & rstNeededGages![PrecipGage] & "'")

If rstPrecipGages.NoMatch Then
MsgBox ("Precip Gage " & rstNeededGages![PrecipGage] & " was not found. Correct

ArcView tables and regenerate model.")
End If

' depending on whether the simulation is a calibration run (COMP) or
' a simulation, sets up the query to extract the appropriate records
If (txtSimulation.Value = "COMP") Then 'extracts only the observed values
strSQL = "SELECT * " & _

"FROM " & rstPrecipGages![TableName] & " " & _
"WHERE [Sequence] = 'COMP' " & _
"ORDER BY [SimulDate];"

Else ' extracts the observed + the future simulation values for the simulation
'requested. There is no date overlap since the future simulation dates
' in the gage record do not overlap the observed ([Sequence] = COMP) records

strSQL = "SELECT * " & _
"FROM " & rstPrecipGages![TableName] & " " & _
"WHERE ([Sequence] = 'COMP') OR ([Sequence] = '" & txtSimulation.Value & "') " & _
"ORDER BY [SimulDate];"

End If

Debug.Print strSQL ' for debugging

 23

' Extract the records based on the query text from the If ... Then statement
Set rstGageData = dbs.OpenRecordset(strSQL)

' goes to the record corresponding to the start of the simulation
rstGageData.FindFirst ("[SimulDate] = #" & StartDate & "#")

D = 0 ' This is the number of days from the the StartDate of the simululation

' Move through the gage record extracted until reach the end or reach the
' end of the simulation
Do Until rstGageData.EOF Or D > SimulDays - 1

' Verifies that the date of the gage record matches the expected value
If D <> rstGageData![SimulDate] - StartDate Then

MsgBox ("Discontinuity in Gage Data")
End If

' Sets the gage date for that gage for the day
GageArray(G, D).SnoPlusRainM = rstGageData![SnoPlusRain] * 0.0254
GageArray(G, D).TAvgF = rstGageData![TAvg]
rstGageData.MoveNext
D = D + 1 'adds one to the day offset

Loop
If D < SimulDays - 1 Then ' reached the end of the record but not the end

'of the simulation
MsgBox ("Reached end of " & rstNeededGages![PrecipGages] _

& "Gage record before End Date of " & EndDate)
End If
rstGageData.Close
rstNeededGages.MoveNext 'goes to the next record which has the name

'of the next required gage
Loop

rstNeededGages.Close
rstPrecipGages.Close
dbs.Close

For I = 1 To NumSubBasins 'cycles through all the subbasins
For G = 1 To NumPrecipGages 'cycles through all the Precip gages

If WS(I).PrecipGage = GageList(G) Then
WS(I).VBGageID = G ' assigns the Gage ID value if the gage

'for the subwatershed matches the gage name for that Gage
'ID Value

End If
Next G
If WS(I).VBGageID = 0 Then 'this should not occur, it indicates

'an empty field in one of the PrecipGage fields in the watershed
' table

MsgBox ("No gage ID was assigned to SubWS Seq # " & I)
End If

Next I

Exit_GetPrecipGages:
Exit Sub

Err_GetPrecipGages:
MsgBox Err.Description
Resume Exit_GetPrecipGages

End Sub

Private Function GetSimulLength()

 24

'obtains the start and end dates of the simulation

On Error GoTo Err_GetSimulLength

If txtSimulation.Value = "COMP" Then 'this is a calibration run
If IsNull(SimulStartDate.Value) Then 'no start date was typed in

SimulStartDate.Value = #10/1/1978# 'sets the default start date
End If
If IsNull(SimulEndDate.Value) Then 'no end date was typed in

SimulEndDate.Value = #9/30/1999# 'sets the default end date
End If

ElseIf txtSimulation.Value = "WET" Then 'this is the WET simulation
SimulStartDate.Value = #10/1/1978# 'sets the appropriate dates
SimulEndDate.Value = #9/30/2035#

Else 'this is neither a calibration run or the WET simulation
SimulStartDate.Value = #10/1/1978# 'sets the appropriate dates
SimulEndDate.Value = #9/30/2020#

End If

Me.Repaint 'refreshes the screen with start and end dates

StartDate = CDate(DateValue(SimulStartDate.Value))
EndDate = CDate(DateValue(SimulEndDate.Value))

' The function return variable is assigned to SimulDays at the Call source
GetSimulLength = EndDate - StartDate + 1 ' how many days the simulation will last

Exit_GetSimulLength:
Exit Function

Err_GetSimulLength:
MsgBox Err.Description
Resume Exit_GetSimulLength

End Function

Private Sub GetEvap()
' gets the evaporation record

Dim dbs As DAO.Database
Dim rst As DAO.Recordset
Dim strSQL As String
Dim NumEvapRecords

StatusBox.Value = "Reading Evaporation Data"
Me.Repaint

Set dbs = CurrentDb

If (txtSimulation.Value = "COMP") Then 'this is a calibration run
strSQL = "SELECT * " & _

"FROM EvapSim " & _
"WHERE [Sequence] = 'COMP' " & _
"AND [SimulDate] >= #" & StartDate & "# AND [SimulDate] <= #" & EndDate & "# " & _
"ORDER BY [SimulDate];"

Else 'this is a simulation, extracts the COMP ("observed") records as well as the
'simulation values. There should be no overlap in dates

strSQL = "SELECT * " & _
"FROM EvapSim " & _
"WHERE ([Sequence] = 'COMP') OR ([Sequence] = '" & txtSimulation.Value & "') " & _
"AND [SimulDate] >= #" & StartDate & "# AND [SimulDate] <= #" & EndDate & "# " & _
"ORDER BY [SimulDate];"

End If

Set rst = dbs.OpenRecordset(strSQL)
rst.MoveLast

 25

NumEvapRecords = rst.RecordCount 'sets how many evaporation records (e.g. dates) were
extracted

' Checks that number of evaporation records is enough to cover the period required
If NumEvapRecords <> EndDate - StartDate + 1 Then

MsgBox ("The number of evap records indicates that it does not span the entire date
range required.")
End If

rst.MoveFirst 'moves to the 1st extracted record

' verifies that both the start date and end date of the
'simulation are in the evap record
rst.FindFirst ("[SimulDate] = #" & EndDate & "#")
If rst.NoMatch Then

MsgBox ("End Date of " & EndDate & " not found in evap record")
End If
rst.FindFirst ("[SimulDate] = #" & StartDate & "#")
If rst.NoMatch Then

MsgBox ("Start Date of " & StartDate & " not found in evap record")
End If

' Dimensions the EvapArrayM to the needed number of days
ReDim EvapArrayM(0 To (SimulDays - 1)) As Single

'Sets the evaporation for each day where the array index
' is the date offset
Do Until rst.EOF

EvapArrayM(rst![SimulDate] - StartDate) = rst![EvapPropM]
rst.MoveNext

Loop

rst.Close
dbs.Close

Exit_GetEvap:
Exit Sub

Err_GetEvap:
MsgBox Err.Description
Resume Exit_GetEvap

End Sub

Private Function Min(A As Variant, B As Variant)
' Calculates the minimum of two values

On Error GoTo Err_Min

If A < B Then
Min = A

Else
Min = B

End If

Exit_Min:
Exit Function

Err_Min:
MsgBox Err.Description
Resume Exit_Min

End Function

Private Sub ReadRegimeParams()
' reads in the regimes

 26

Dim dbs As DAO.Database
Dim rstRegions As DAO.Recordset
Dim rstRegimes As DAO.Recordset
Dim Region As Long
Dim Regime As Long
Dim strSQL As String
Dim NumRegimes As Long 'Is set to the number of regimes

'in each region as the Do loop cycles through the regions

StatusBox.Value = "Reading In Regimes"
Me.Repaint

Set dbs = CurrentDb

' Gets a list of Regions from the model's regime table
strSQL = "SELECT Region FROM " & ModelRegimeTable & " GROUP BY Region ORDER BY Region;"
Set rstRegions = dbs.OpenRecordset(strSQL)
rstRegions.MoveLast
NumRegions = rstRegions.RecordCount
rstRegions.MoveFirst
If NumRegions = 0 Then

MsgBox ("No Records in Regime Table. Stop and fix.")
End If

' Dimensions the RegimeRegionArray to required dimensions
ReDim RegimeRegionArray(2, NumRegions)

For Region = 1 To NumRegions 'cycles through the extract regions of the model's Regime
table

If (rstRegions![Region] <> Region) Then 'verifies the regions are in order
MsgBox ("Regions are not in sequence. Stop simululation and fix.")

End If

' Extracts the records for the current region from the model's Regime table
strSQL = "SELECT * FROM " & ModelRegimeTable & " WHERE (((Region) = " & Region &

"))ORDER BY Region, RegimeID;"
Set rstRegimes = dbs.OpenRecordset(strSQL)

rstRegimes.MoveLast
NumRegimes = rstRegimes.RecordCount 'sets the number of records found for this Region

in
'the model's Regime table

rstRegimes.MoveFirst

If NumRegimes <> 2 Then ' the number of Regimes should equal 2 for each Region
MsgBox ("Number of Regimes for Region " & Region & " equals " & NumRegimes & ". It

should = 2. Stop and fix regimes table.")
End If
For Regime = 1 To NumRegimes 'cycles through the regimes

With rstRegimes 'all record references are for this recordset
If ![RegimeID] <> Regime Then 'verifies the Regimes are in order starting with

1
MsgBox ("Regime sequence is incorrect - regime # must = record number in

Regime Table")
End If

'Sets all the Regime parameters for each region from the table
RegimeRegionArray(Regime, Region).EntryThresholdF = ![EntryThresholdF]
RegimeRegionArray(Regime, Region).ETCoef = ![ETCoef]
RegimeRegionArray(Regime, Region).InfilMPD = ![InfilMPD]
RegimeRegionArray(Regime, Region).NextDayFractionalFlow =

![NextDayFractionalFlow]
RegimeRegionArray(Regime, Region).TodaysFractionalFlow = 1# -

RegimeRegionArray(Regime, Region).NextDayFractionalFlow
RegimeRegionArray(Regime, Region).PercMPD = ![PercMPD]

 27

RegimeRegionArray(Regime, Region).PotentialSoilCapM = ![PotentialSoilCapM]
RegimeRegionArray(Regime, Region).UpperZoneM = ![UpperZoneM]
RegimeRegionArray(Regime, Region).InitialSoilCapM = ![InitialSoilCapM]
.MoveNext

End With 'ends the "With rstRegimes" statment
Next Regime
rstRegimes.Close
rstRegions.MoveNext

Next Region

rstRegions.Close
dbs.Close

End Sub
Private Function SetSeasonBreaks()

' sets the Regimes (e.g. Seasons) based on the moving average of temperature
' for each gage, using the thresholds estableshied in the model's Regime table

Dim dbs As DAO.Database
Dim rst As DAO.Recordset, rstBD As DAO.Recordset
Dim qdf As DAO.QueryDef

Dim D As Date ' a temporary variable to hold dates
Dim Month As Long
Dim Day As Long
Dim Year As Long
Dim Index As Long ' used to hold the date offset, the number of days

' since the simulation start date
Dim G As Long ' used to cycle through the precipitation gages for this model
Dim Lag As Integer ' the Lag time in days
Dim K As Integer ' a counter
Dim Sum As Single 'used to sum the total degrees over the lag period
Dim Avg As Single 'used to hold the average temperature over the lag period
Dim Tl As Single 'The Regime = 1 entry threshold temperature

'in degrees F. When the moving
'average over Lag days drops below this for the first time (from October -
' December), that and subsequent days are tagged as being in Regime 1.

Dim Th As Single ' The Regime = 2 entry threshold temperature
'in degress F. When the moving average of the previous Lag days goes
'above this for the first time (in January - June), that and subsequent
'days are tagged as being in Regime 2.

Dim Tcur As Single ' A holder for the current day's temperature at the gage
Dim strSQL As String
Dim Tp As String 'Indicates the current Regime. If Tp = "H" then are currently

'in Regime 2, if Tp = "L" then are currently in Regime 1.

Dim TableNameSeasons As String 'The name of the table to which to output the
'Season/Regime information for this model. This is an output table only and
' is not used by the program

'sets the table name to output the seasonal / Regime information to
TableNameSeasons = GetOutputTableName(txtWaterShed.Value & "_SEASONS")
DeleteTableWithoutWarning (TableNameSeasons) 'deletes table if it exists

Set dbs = CurrentDb

'Creates the season information output table
' This table has one record for each date in which the Regimes / Seasons
' changed for each gage.
strSQL = "CREATE TABLE " & TableNameSeasons & " " & _

"([Gage] char(20), " & _
"[StartDate] Date, " & _
"[Season] char(10), " & _

 28

"[MovingAverage] double, " & _
"PRIMARY KEY ([Gage], [StartDate]));"

Debug.Print strSQL 'for debugging

Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute
dbs.TableDefs.Refresh

' Deletes all records from SeasonBreakOutput, a table which
' records the daily regimes for each gage. This table is used for
' queries that extract data from the simulation run.
strSQL = "DELETE * FROM SeasonBreakOutput;"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute

Set rst = dbs.OpenRecordset("SeasonBreakOutput")
Set rstBD = dbs.OpenRecordset(TableNameSeasons)

' The entry threshold to enter into Winter / Low infiltration is
' set -- it is only based on the values from Region 1
Tl = RegimeRegionArray(1, 1).EntryThresholdF

' The entry threshold to enter into Summer / High infiltration is
' set -- it is only based on the values from Region 1
Th = RegimeRegionArray(2, 1).EntryThresholdF

Lag = 30 'sets the lag time in days; moving averages of temperature will
'be calculated back this many days

For G = 1 To NumPrecipGages 'cycles through each Precip Gage

D = StartDate 'starts at the first date of the simulation
Tp = " "
Do While D <= EndDate 'loops until the end date of the simululation

Index = CLng(D - StartDate) 'sets the date offset
If (Index < Lag - 1) Then ' are not far enough along to take a moving

'average

Avg = 0
If GageArray(G, 0).TAvgF > Th Then 'sets the initial Regime

'based on whether the temperature on the 1st day of the run
'is greate than the Th, the entry threshold for Regime 2.

Tp = "H"
Else

Tp = "L"
End If
If D = StartDate Then 'writes out a record to the season output

'table for the start date of the run for this gage

rstBD.AddNew
rstBD![StartDate] = D
rstBD![Season] = Tp
rstBD![MovingAverage] = Avg
rstBD![Gage] = GageList(G)
rstBD.Update

End If
Else

Month = CLng(Format(D, "mm")) 'extracts the month number from the date
Sum = 0
For K = 0 To Lag - 1 'adds up all the average temperatures over the lag

'period

Sum = Sum + GageArray(G, Index - K).TAvgF
Next K
Avg = Sum / Lag 'calculates the moving average

 29

If ((Avg < Tl And Month >= 10 And Month <= 12) And Tp = "H") Then
'If this is true then were in Regime 2 (Tp = "H") and just
'transitioned into Regime 1 by the moving average temperature
' (Avg) dropping below the threshold temperature Tl.

' Add a record to the season output table indicating the transition
rstBD.AddNew
rstBD![StartDate] = D
rstBD![Season] = "L"
rstBD![MovingAverage] = Avg
rstBD![Gage] = GageList(G)
rstBD.Update
Tp = "L"

ElseIf (Avg > Th And Month >= 1 And Month <= 6 And Tp = "L") Then
'If this is true then were in Regime 1 (Tp = "L") and just
'transitioned into Regime 2 by the moving average temperature
'(Avg) rising above the the threshold temperature Th.

' Add a record ot the season output table indicating the transition
rstBD.AddNew
rstBD![StartDate] = D
rstBD![Season] = "H"
rstBD![MovingAverage] = Avg
rstBD![Gage] = GageList(G)
rstBD.Update
Tp = "H"

End If
End If

If Tp = "H" Then 'Assign the regime for this gage and date offset (Index)
GageArray(G, Index).Regime = 2

Else
GageArray(G, Index).Regime = 1

End If
GageArray(G, Index).MovingAverageF = Avg 'set the moving average in the gage

'array

' Add a record to the SeasonBreakOutput table for this date and gage,
' indicating the regime.
rst.AddNew
rst![Season] = Tp
rst![Date] = D
rst![TAverage] = GageArray(G, Index).TAvgF
rst![MovingAverage] = Avg
rst![Gage] = GageList(G)
rst.Update
D = D + 1 'increments the current date by 1

Loop

Next G

rst.Close
rstBD.Close
dbs.Close

Exit_SetSeasonBreaks:
Exit Function

Err_SetSeasonBreaks:
MsgBox Err.Description
Resume Exit_SetSeasonBreaks

End Function

Function DoesObjectExist(ObjectType$, ObjectName$)
'This function was copied from a Microsoft website

 30

'and was slightly modified

On Error Resume Next

Dim Found_Object, Find_Object As String, ObjectNum As Integer
Dim DB As Database, T As TableDef
Dim Q As QueryDef, C As Container
Dim Msg As String
Found_Object = -1
Set DB = CurrentDb

Select Case ObjectType$
Case "Tables"

Find_Object = DB.TableDefs(ObjectName$).Name

Case "Queries"

Find_Object = DB.QueryDefs(ObjectName$).Name

Case Else

If ObjectType$ = "Forms" Then
ObjectNum = 1

ElseIf ObjectType$ = "Modules" Then
ObjectNum = 2

ElseIf ObjectType$ = "Reports" Then
ObjectNum = 4

ElseIf ObjectType$ = "Macros" Then
ObjectNum = 5

Else
Msg = "Object Name """ & ObjectType & """ is an invalid"
Msg = Msg & " argument to function ObjectExists_20!"
MsgBox Msg, 16, "ObjectExists_20"
Exit Function

End If

Set C = DB.Containers(ObjectNum)
Find_Object = C.Documents(ObjectName$).Name

End Select

If Err = 3265 Or Find_Object = "" Then

Found_Object = ""

End If

DoesObjectExist = Found_Object

End Function

Private Sub CalcOneDayFlow(Row As Long, CurrentDate As Date, rst As DAO.Recordset,
rstOutput As DAO.Recordset)

'Calculates one day of activity

Dim SubB As Long 'this will be the subbasin value in the for next loop
Dim PrecipM As Double 'This is read from the precip record for the gage and date
'The following variables are all set from the regime that the watershed pertains to for the
date in question
Dim PotentialInfilMPD As Double
Dim PotentialPercMPD As Double
Dim ETCoef As Double
Dim UpperZoneM As Double
Dim PotentialSoilCapM As Double
'The following are and/or intermediate values used in the this subroutine

 31

Dim InfilM As Double
Dim PercM As Double
Dim SoilCapM As Double 'Soil capacity; greater soil capacity
Dim SoilEvapM As Double
Dim PrecipOnDepOnRiverM3 As Double 'Precipitation directly on depressions

'that intersect the river network (on river)

Dim PrecipOnDepOffRiverM3 As Double 'Precipitation directly on depressions
'that do not intersect the river network (off river)

Dim DepStorOnRiverM3 As Double 'Water storage of depressions on the river
Dim DepStorOffRiverM3 As Double 'Water storage of depressions off the river
Dim DepEvapOnRiverM3 As Double 'Evaporation of depressions on the river
Dim DepEvapOffRiverM3 As Double 'Evaporation of depressions off the river
Dim DepAreaForEvapOnRiverM2 As Double 'Surface are of on river depressions

'when those depressions are full

Dim DepAreaForEvapOffRiverM2 As Double 'Surface are of off river depressions
'when those depressions are full

Dim RunoffToDepStorOnRiverM3 As Double 'Runoff to on river depressions from
'their contributing area in the same subbasin
'not including the depressional area itself

Dim RunoffToDepStorOffRiverM3 As Double 'Runoff to off river depressions from
'their contributing area in the same subbasin
'not including the depressional area itself

Dim DSOutflowOnRiverM3 As Double 'The outflow from on river depressions to
'the downstream subbasin (or outlet) This outflow is caused by overtopping
'except in the case of lakes which have a volume / outflow relationship

Dim OutflowOffRiverM3 As Double 'The outflow from off river depression to
'the on river depression in the same subbasin.
'This outflow is caused by overtopping

Dim Regime As Long 'The Regime (Season), 1 or 2; each Gage has a particular
'Regime for each calendar date, and each subbasin is assigned to a gage.

Dim Region As Long 'The Region number as specified in the watersheds table,
'the region is set by Subbasin

Dim DSSubB As Long 'The sequence number of the subbasin downstream of the
'the current subbasin

Dim TotalWaterEndOfDayM3 As Double 'Total water in the system at the end of
'the day; includes all subbasins. Soil water is accounting as negative
'soil capacity -- for debuggine purposes only

Dim TodaysDepEvapOnRiverM3 As Double 'Day's total evaporation from on river depressions
Dim TodaysDepEvapOffRiverM3 As Double 'Day's total evaporation from off river depressions
Dim TodaysETEvapM3 As Double 'Day's total volume of evapotranspirated water
Dim TodaysPercM3 As Double 'Day's total percolation volume of water
Dim TodaysPrecipM3 As Double 'Days total precipitation volume
Dim TodaysPercM As Double 'Days percolation distance; a weighted average
Dim TensionZoneCapFrac As Double 'Tension zone capacity fraction, set for

'each subwatershed

Dim ETTensionZoneMultiplier As Double 'The multiplier which may reduce
'ET due to soil dryness, set for each subwatershed

Dim RunoffM As Double 'Runoff in meters, set for each subwatershed
Dim SoilCapacityFraction As Double 'The fractional soil capacity, set

'by each subwatershed

Dim MovingAverageF As Double 'The moving average temperate for the subbasin's

 32

'gage as determined in SetSeasonBreaks

Dim HighEntryThresholdF As Double 'The entry threshold to move into the 2
'Regime (High infiltration) as set in the model's regime table; this is
'used to in the final days of Regime 1 to slowly increase the potential
'infiltatration to provide a smooth transition to Regime 2

Dim HighPotentialInfilMPD As Double 'The potential infiltration of the 2 Regime
'this is used to in the final days of Regime 1 to slowly increase the potential
'infiltatration to provide a smooth transition to Regime 2

'Initialize various variables
TotalWaterEndOfDayM3 = 0#
TodaysDepEvapOnRiverM3 = 0#
TodaysDepEvapOffRiverM3 = 0#
TodaysETEvapM3 = 0#
TodaysPercM3 = 0#
TodaysPrecipM3 = 0#
TodaysPercM = 0#
SoilCapacityFraction = 0#

For SubB = 1 To NumSubBasins 'cycle through the subbasins starting upstream

If ST(Row, SubB).SimulDate <> CurrentDate Then 'for debugging
MsgBox "Mismatch in Date in ST Array"

End If

'Write inflow to table if this watershed is tagged for output
If WS(SubB).ExtraInflowIndex <> 0 Then

rstExtraInflowTable(WS(SubB).ExtraInflowIndex).AddNew
rstExtraInflowTable(WS(SubB).ExtraInflowIndex)![Date] = CurrentDate
rstExtraInflowTable(WS(SubB).ExtraInflowIndex)![CMPD] = ST(Row, SubB).InflowM3
rstExtraInflowTable(WS(SubB).ExtraInflowIndex).Update

End If

'The regime number is determined for this gage and the current date
'Regimes are set seasonally according to the algorithm in the AssignRegimes fucntion
'They are set seasonally for each gage. The following equation looks up the gage

number for the current watershed
'And finds what regime is associated with that gage for the current date
Regime = GageArray(WS(SubB).VBGageID, CurrentDate - StartDate).Regime
Region = WS(SubB).Region

'All the regime variables are set
PotentialInfilMPD = RegimeRegionArray(Regime, Region).InfilMPD 'Looks up the maximum

infiltration for the current regime
If (Regime = 1) Then 'the following smooths the increase in at the end of winter; also

affects the beginning of winter
HighPotentialInfilMPD = RegimeRegionArray(2, Region).InfilMPD
MovingAverageF = GageArray(WS(SubB).VBGageID, CurrentDate -

StartDate).MovingAverageF
HighEntryThresholdF = RegimeRegionArray(2, Region).EntryThresholdF
If MovingAverageF < HighEntryThresholdF And MovingAverageF > 32# Then

PotentialInfilMPD = Max(HighPotentialInfilMPD * ((MovingAverageF - 32#) /
(HighEntryThresholdF - 32#)) ^ 2#, PotentialInfilMPD)

End If
End If
PotentialPercMPD = RegimeRegionArray(Regime, Region).PercMPD 'Looks up the maximum

percolation rate the current regime
ETCoef = RegimeRegionArray(Regime, Region).ETCoef 'Looks up the EvapoTranspiration

coeffcient for the current regime
UpperZoneM = RegimeRegionArray(Regime, Region).UpperZoneM 'Looks up the depth of the

upper zone for the current regime
PotentialSoilCapM = RegimeRegionArray(Regime, Region).PotentialSoilCapM 'Looks up the

potential soil capacity for the current regime

 33

'Precipitation is determined
PrecipM = GageArray(WS(SubB).VBGageID, CLng(CurrentDate - StartDate)).SnoPlusRainM

'SoilCapacity is set to its starting value
SoilCapM = ST(Row, SubB).StartSoilCapM 'sets initial soil capacity
'Infiltration is determined; it is the minimum of Precipitation, Potential

Infiltration, and the Starting soil
'capacity of the subbasin.
'Adjust potential infiltration rate based on soil saturationm as in HMS Soil Moisture

Accounting
PotentialInfilMPD = PotentialInfilMPD * SoilCapM / PotentialSoilCapM
If PrecipM > 0# Then

InfilM = Min(PrecipM, PotentialInfilMPD)
InfilM = Min(InfilM, ST(Row, SubB).StartSoilCapM)
'An intermediate soil capacity is calculated after infiltration but before

percolation
SoilCapM = SoilCapM - InfilM 'starting capacity minus infiltration

Else
InfilM = 0# 'no infiltration takes place if no precip

End If

'Runoff from this subbasin's soil is calculated
'it is the excess of precip over infiltration times non-depressional area) that goes

into it's own depressions is calculated
If (PrecipM > InfilM) Then

RunoffM = PrecipM - InfilM
RunoffToDepStorOnRiverM3 = RunoffM * WS(SubB).WSAreaNonDepOnRiverM2
RunoffToDepStorOffRiverM3 = RunoffM * WS(SubB).WSAreaNonDepOffRiverM2

Else
RunoffM = 0#
RunoffToDepStorOnRiverM3 = 0#
RunoffToDepStorOffRiverM3 = 0#

End If

'Percolation is determined. SoilCapM recalculated to include percolation
PotentialPercMPD = RegimeRegionArray(Regime, Region).PercMPD 'Looks up the maximum

percolation for the regime of the watershed
If SoilCapM > UpperZoneM Then 'no percolation takes place because are not in the upper

zone
PercM = 0# 'nothing happens

ElseIf SoilCapM + PotentialPercMPD < UpperZoneM Then 'percolation would still leave
soil capacity in the upper zone

SoilCapM = SoilCapM + PotentialPercMPD 'The Soil Capacity is increased by the
maximum percolation allowed

PercM = PotentialPercMPD
Else 'the only option left is that the starting soil capacity is in the upper zone, but

the maximum percolation would take it below the upper zone
PercM = UpperZoneM - SoilCapM
SoilCapM = UpperZoneM 'therefore only enough percolates for the Soil Capacity to

equal the upper zone limit
End If
'Add the subbasin's percolation volume to the day's total
TodaysPercM3 = TodaysPercM3 + PercM * (WS(SubB).WSAreaNonDepOnRiverM2 +

WS(SubB).WSAreaNonDepOffRiverM2)

'Precipitation on the depressional area is calculated - the full depressional area is
used

If (PrecipM > 0#) Then
PrecipOnDepOnRiverM3 = PrecipM * WS(SubB).DepAreaOnRiverM2
PrecipOnDepOffRiverM3 = PrecipM * WS(SubB).DepAreaOffRiverM2

Else 'no precipitation
PrecipOnDepOnRiverM3 = 0#
PrecipOnDepOffRiverM3 = 0#

End If

'Add the precipitation on the various portions of the subbasin
'to the day's total precipitation

 34

TodaysPrecipM3 = TodaysPrecipM3 + _
PrecipOnDepOnRiverM3 + PrecipOnDepOffRiverM3 + _

(WS(SubB).WSAreaNonDepOnRiverM2 + WS(SubB).WSAreaNonDepOffRiverM2) * PrecipM

'The precipitation is added to the depressional storage, along with starting value,
'inflow from upstream, and runoff calculated above
If (PrecipM > 0#) Then

DepStorOnRiverM3 = ST(Row, SubB).StartDepStorOnRiverM3 + _
ST(Row, SubB).InflowM3 + RunoffToDepStorOnRiverM3 + PrecipOnDepOnRiverM3

DepStorOffRiverM3 = ST(Row, SubB).StartDepStorOffRiverM3 + _
RunoffToDepStorOffRiverM3 + PrecipOnDepOffRiverM3

Else 'no precipitation, just add upstream inflow
DepStorOnRiverM3 = ST(Row, SubB).StartDepStorOnRiverM3 + ST(Row, SubB).InflowM3
DepStorOffRiverM3 = ST(Row, SubB).StartDepStorOffRiverM3

End If

If WS(SubB).VBInputStreamID > 0 Then 'If there is an input stream this adds that inflow
DepStorOnRiverM3 = DepStorOnRiverM3 + _

InputStream(WS(SubB).VBInputStreamID, CLng(CurrentDate - StartDate))
ST(Row, SubB).InflowM3 = ST(Row, SubB).InflowM3 +

InputStream(WS(SubB).VBInputStreamID, CLng(CurrentDate - StartDate))
End If

' Then evap off the soil. As water level drops soil capacity is increased
' Set TensionZoneCapFrac which is the fractional water capacity of the tension zone

(ten zone = Total Storage Potential - Upper Zone)
SoilEvapM = -1# ' set this as negative for debugging purposes; if still negative later,

it wasn't set as it should have been
If SoilCapM > UpperZoneM Then ' the upper zone is dry

TensionZoneCapFrac = (SoilCapM - UpperZoneM) / (PotentialSoilCapM - UpperZoneM)
If TensionZoneCapFrac >= 0.5 Then

ETTensionZoneMultiplier = 1# - TensionZoneCapFrac
ElseIf TensionZoneCapFrac <= 0.4 Then

ETTensionZoneMultiplier = 1# 'here the Fractional Tension Zone Capacity is
between 0.4 and 0.5

Else
ETTensionZoneMultiplier = (0.5 - TensionZoneCapFrac) * 0.5 + 0.5
If TensionZoneCapFrac < 0.4 Or TensionZoneCapFrac > 0.5 Then 'this is for

debugging purposes
MsgBox ("Tension Zone Capacity out of range. Stop and debug.")

End If
End If
SoilEvapM = ETTensionZoneMultiplier * EvapArrayM(CurrentDate - StartDate) * ETCoef

Else ' the upper zone has water and the tension zone is saturated -- the evaporation is
the full amount

TensionZoneCapFrac = 0#
ETTensionZoneMultiplier = 1#
SoilEvapM = EvapArrayM(CurrentDate - StartDate) * ETCoef

End If

If SoilEvapM < 0# Then ' a check for debugging purposes
MsgBox ("Soil Evap Not set. Debug Code")

End If

' update the soil capacity based on the evaporation that was just calculated
If SoilCapM + SoilEvapM > PotentialSoilCapM Then 'evaporation would take water level

below the soil capacity
SoilEvapM = PotentialSoilCapM - SoilCapM 'set evaporation to just dry out the soil
SoilCapM = PotentialSoilCapM 'reset the Soil Capacity to potential soil capacity

Else 'the full evaporation takes place since there is enough soil capacity
SoilCapM = SoilCapM + SoilEvapM

End If

If SoilEvapM < 0# Then 'for debugging purposes
MsgBox ("Soil Evap is negative. Stop program and debug.")

End If

 35

TodaysETEvapM3 = TodaysETEvapM3 + SoilEvapM * _
(WS(SubB).WSAreaNonDepOnRiverM2 + WS(SubB).WSAreaNonDepOffRiverM2)

' Find the surface area to evap off of in the ON river depressions
If WS(SubB).DepVolOnRiverM3 = 0# Then 'if there is no depressional volume available

then evap. is zero
DepAreaForEvapOnRiverM2 = 0#

ElseIf DepStorOnRiverM3 = 0# Then 'if no water in depression then evap area is zero
DepAreaForEvapOnRiverM2 = 0#

ElseIf DepStorOnRiverM3 > WS(SubB).DepVolOnRiverM3 Then 'is already overtopped
DepAreaForEvapOnRiverM2 = WS(SubB).DepAreaOnRiverM2

Else 'This is the algorithm for setting the depressional area to evap off of
DepAreaForEvapOnRiverM2 = Sqr(DepStorOnRiverM3 / WS(SubB).DepVolOnRiverM3) *

WS(SubB).DepAreaOnRiverM2
End If

If (WS(SubB).LakeID <> 0) Then 'There is a lake here; must override the depressional
area for evaporation

DepAreaForEvapOnRiverM2 = LakeTable(WS(SubB).LakeID,
GetLakeTableRow(WS(SubB).LakeID, DepStorOnRiverM3)).AreaM2

If DepAreaForEvapOnRiverM2 > WS(SubB).DepAreaOnRiverM2 Then 'If area exceeds area
given in watershed table

DepAreaForEvapOnRiverM2 = WS(SubB).DepAreaOnRiverM2 'then area is set to
maximum regardless of what the lake table says

End If
End If

' Find the surface area to evap off of in the OFF river depressions
If WS(SubB).DepVolOffRiverM3 = 0# Then 'if there is no depressional volume available

then evap. is zero
DepAreaForEvapOffRiverM2 = 0#

ElseIf DepStorOffRiverM3 = 0# Then 'if no water in depression then evap area is zero
DepAreaForEvapOffRiverM2 = 0#

ElseIf DepStorOffRiverM3 > WS(SubB).DepVolOffRiverM3 Then 'is already overtopped
DepAreaForEvapOffRiverM2 = WS(SubB).DepAreaOffRiverM2

Else 'This is the algorithm for setting the depressional area to evap off of
DepAreaForEvapOffRiverM2 = Sqr(DepStorOffRiverM3 / WS(SubB).DepVolOffRiverM3) *

WS(SubB).DepAreaOffRiverM2
End If

'Evaporate the water from the depressions ON RIVER
If DepAreaForEvapOnRiverM2 > 0# Then

DepEvapOnRiverM3 = DepAreaForEvapOnRiverM2 * EvapArrayM(CurrentDate - StartDate)
DepStorOnRiverM3 = DepStorOnRiverM3 - DepEvapOnRiverM3
If DepEvapOnRiverM3 > DepStorOnRiverM3 Then 'everything in the depression

evaporates away
DepEvapOnRiverM3 = DepStorOnRiverM3 'sets new evaporation volume
DepStorOnRiverM3 = 0# 'zeros out the depressional storage

End If
Else

DepEvapOnRiverM3 = 0#
End If

' Evaporate the water from the depressions OFF RIVER
If DepAreaForEvapOffRiverM2 > 0# Then

DepEvapOffRiverM3 = DepAreaForEvapOffRiverM2 * EvapArrayM(CurrentDate - StartDate)
DepStorOffRiverM3 = DepStorOffRiverM3 - DepEvapOffRiverM3
If DepEvapOffRiverM3 > DepStorOffRiverM3 Then 'everything in the depression

evaporates away
DepEvapOffRiverM3 = DepStorOffRiverM3 'sets new evaporation volume
DepStorOffRiverM3 = 0# 'zeros out the depressional storage

End If
Else

DepEvapOffRiverM3 = 0#
End If

'Increments the day's evaporation volume totals

 36

TodaysDepEvapOnRiverM3 = TodaysDepEvapOnRiverM3 + DepEvapOnRiverM3
TodaysDepEvapOffRiverM3 = TodaysDepEvapOffRiverM3 + DepEvapOffRiverM3

DSOutflowOnRiverM3 = 0#
OutflowOffRiverM3 = 0#

'Runoff from the off River depressions to the ON River Depressions
'in the same subbasin if they are overflowing
If DepStorOffRiverM3 > WS(SubB).DepVolOffRiverM3 Then 'the depression has overflowed

OutflowOffRiverM3 = DepStorOffRiverM3 - WS(SubB).DepVolOffRiverM3
OutflowOffRiverM3 = Min(OutflowOffRiverM3, DepStorOffRiverM3) 'flow cannot exceed

depressional storage
DepStorOnRiverM3 = DepStorOnRiverM3 + OutflowOffRiverM3
DepStorOffRiverM3 = WS(SubB).DepVolOffRiverM3 'Sets depressional storage equal to

the maximum
Else

OutflowOffRiverM3 = 0#
End If

'Initialize variable
DSOutflowOnRiverM3 = 0#
' Then runoff from the on ON river depressions to downstream depressions if it is

overflowing
If DepStorOnRiverM3 > WS(SubB).DepVolOnRiverM3 Then 'the depression has overflowed;

sent the water downstream
DSSubB = WS(SubB).DSSubBSeq 'This is the identifier of the downstream subbasin
DSOutflowOnRiverM3 = DepStorOnRiverM3 - WS(SubB).DepVolOnRiverM3
If (WS(SubB).LakeID <> 0) Then 'There is a lake here; must reset flow based on

volume
DSOutflowOnRiverM3 = LakeTable(WS(SubB).LakeID,

GetLakeTableRow(WS(SubB).LakeID, DepStorOnRiverM3)).FlowM3PD
DSOutflowOnRiverM3 = Min(DSOutflowOnRiverM3, DepStorOnRiverM3) 'flow cannot exceed

depressional storage
End If
'The following adds the outflow from this Subbasin to the inflow from the

downstream subbasin
'Send the amount of flow that appears downstream on the same day
ST((Row) Mod STArrayDim1, DSSubB).InflowM3 = _

ST((Row) Mod STArrayDim1, DSSubB).InflowM3 + DSOutflowOnRiverM3 *
RegimeRegionArray(Regime, Region).TodaysFractionalFlow

'Send the amount of flow that appears downstram on the following day
ST((Row + 1) Mod STArrayDim1, DSSubB).InflowM3 = _

ST((Row + 1) Mod STArrayDim1, DSSubB).InflowM3 + DSOutflowOnRiverM3 *
RegimeRegionArray(Regime, Region).NextDayFractionalFlow

If (WS(SubB).LakeID = 0) Then
DepStorOnRiverM3 = WS(SubB).DepVolOnRiverM3 'Sets depressional storage equal

to the maximum
Else 'this is a lake, reduce depressional storage by the outflow amount

DepStorOnRiverM3 = DepStorOnRiverM3 - DSOutflowOnRiverM3
End If

Else
DSOutflowOnRiverM3 = 0#

End If

If WS(SubB).ExtraOutflowIndex <> 0 Then
rstExtraOutflowTable(WS(SubB).ExtraOutflowIndex).AddNew
rstExtraOutflowTable(WS(SubB).ExtraOutflowIndex)![Date] = CurrentDate
rstExtraOutflowTable(WS(SubB).ExtraOutflowIndex)![CMPD] = DSOutflowOnRiverM3
rstExtraOutflowTable(WS(SubB).ExtraOutflowIndex).Update

End If

' The following adds the Soil Capacity of this subwatershed times it's fraction of the
total non-depressional area

' When summed over entire watershed, SoilCapacityFraction is the weighted average of
the soil capacity of the watershed

SoilCapacityFraction = SoilCapacityFraction + (SoilCapM / PotentialSoilCapM) *
WS(SubB).WSAreaNonDepFractionOfTotal

 37

'Prepare the ST Array for this subwatershed for the following day
ST((Row + 1) Mod STArrayDim1, SubB).StartDepStorOnRiverM3 = DepStorOnRiverM3
ST((Row + 1) Mod STArrayDim1, SubB).StartDepStorOffRiverM3 = DepStorOffRiverM3
ST((Row + 1) Mod STArrayDim1, SubB).StartSoilCapM = SoilCapM

If InfilM < 0# Or PercM < 0# Or SoilCapM > PotentialSoilCapM Then
MsgBox ("Prohibited values being found -- break program and debug")

End If

'Increase the total water storage
TotalWaterEndOfDayM3 = TotalWaterEndOfDayM3 + DepStorOnRiverM3 + DepStorOffRiverM3

'Write out the trace record to the table if LongTrace button is set
'used for debugging
If LongTrace.Value = True Then

With rst
.AddNew
![Date] = CurrentDate
![SubBSeq] = SubB
![DSSubBSeq] = WS(SubB).DSSubBSeq
![Regime] = Regime
![PotentialInfilMPD] = PotentialInfilMPD
![PotentialPercMPD] = PotentialPercMPD
![ETCoef] = ETCoef
![UpperZoneM] = UpperZoneM
![PotentialSoilCapM] = PotentialSoilCapM
![PrecipM] = PrecipM
![InfilM] = InfilM
![PercM] = PercM
![StartSoilCapM] = ST(Row, SubB).StartSoilCapM
![EndSoilCapM] = SoilCapM
![SoilEvapM] = SoilEvapM
![EndSoilCapM] = SoilCapM
![InflowM3] = ST(Row, SubB).InflowM3
![StartDepStorOnRiverM3] = ST(Row, SubB).StartDepStorOnRiverM3
![StartDepStorOffRiverM3] = ST(Row, SubB).StartDepStorOffRiverM3
![PrecipOnDepOnRiverM3] = PrecipOnDepOnRiverM3
![PrecipOnDepOffRiverM3] = PrecipOnDepOffRiverM3
![RunoffToDepStorOnRiverM3] = RunoffToDepStorOnRiverM3
![RunoffToDepStorOffRiverM3] = RunoffToDepStorOffRiverM3
![DepEvapOnRiverM3] = DepEvapOnRiverM3
![DepEvapOffRiverM3] = DepEvapOffRiverM3
![EndDepStorOnRiverM3] = DepStorOnRiverM3
![EndDepStorOffRiverM3] = DepStorOffRiverM3
![DepAreaForEvapOnRiverM2] = DepAreaForEvapOnRiverM2
![DepAreaForEvapOffRiverM2] = DepAreaForEvapOffRiverM2
![DSOutflowOnRiverM3] = DSOutflowOnRiverM3
![OutflowOffRiverM3] = OutflowOffRiverM3
.Update

End With

End If

Next SubB

'Write out the outlet flow if the LongTrace button is on
'for debugging
If LongTrace.Value = True Then

With rst
.AddNew
![Date] = CurrentDate
![SubBSeq] = 0
![InflowM3] = ST(Row, 0).InflowM3
.Update

End With
End If

 38

'Write out the results to the SimulOutput table
With rstOutput

.AddNew
![Date] = CurrentDate
![CMPD] = ST(Row, 0).InflowM3
TotalOutletOutflowM3 = TotalOutletOutflowM3 + ST(Row, 0).InflowM3
![StorageVolUtil] = TotalWaterEndOfDayM3 / (TotalIntactDepStorOnRiverM3 +

TotalIntactDepStorOffRiverM3)
![SoilCapacityFraction] = SoilCapacityFraction
![PrecipM3] = TodaysPrecipM3
![LostToETM3] = TodaysETEvapM3
![LostToEvapM3] = TodaysDepEvapOnRiverM3 + TodaysDepEvapOffRiverM3
![LostToPercM3] = TodaysPercM3
.Update

End With

Exit_CalcOneDayFlow:
Exit Sub

Err_CalcOneDayFlow:
MsgBox Err.Description
Resume Exit_CalcOneDayFlow

End Sub

Sub CreateOutputTable()
'This creates the output table for the model; copied from the SimulOutput table
'The table is named according the wateshed, simulation, and restoration
'level as set in the function GetOutputTableName

Dim dbs As DAO.Database
Dim qdf As DAO.QueryDef
Dim idx As DAO.Index
Dim tdf As DAO.TableDef
Dim fldIndex As DAO.Field
Dim strSQL As String
Dim OutputTableName As String

OutputTableName = GetOutputTableName(txtWaterShed.Value)

Set dbs = CurrentDb

DeleteTableWithoutWarning (OutputTableName)

strSQL = "SELECT * INTO " & OutputTableName & " FROM SimulOutput ORDER BY Date;"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute

Set tdf = dbs.TableDefs(OutputTableName)
Set idx = tdf.CreateIndex("PrimaryKey")
Set fldIndex = idx.CreateField("Date", dbDate)
idx.Fields.Append fldIndex
idx.Primary = True
tdf.Indexes.Append idx
dbs.TableDefs.Refresh

dbs.Close

End Sub

Function GetOutputTableName(PrefixName)
'returns the output table name based on watershed, simulation, and restoration level

 39

GetOutputTableName = "OUTPUT_" & PrefixName & "_" & txtSimulation.Value & "_" &
txtRestorationLevel.Value

End Function

Function GetInflowTableName(PrefixName)
'returns the inflow table name based on watershed, simulation, and restoration level

GetInflowTableName = "INFLOW_" & PrefixName & "_" & txtSimulation.Value & "_" &
txtRestorationLevel.Value

End Function

Function GetOutflowTableName(PrefixName)
'returns the output table name based on watershed, simulation, and restoration level

GetOutflowTableName = "OUTFLOW_" & PrefixName & "_" & txtSimulation.Value & "_" &
txtRestorationLevel.Value

End Function

Private Sub InitializeExternalVariables()
'Initializes all external variables

ReDim ExtraInflowTable(25) As String
ReDim rstExtraInflowTable(25) As DAO.Recordset
ReDim ExtraOutflowTable(25) As String
ReDim rstExtraOutflowTable(25) As DAO.Recordset

NumPrecipGages = 0
NumRegions = 0
LongestLakeTableSize = 0
STArrayDim1 = 0
SimulDays = 0
NumSubBasins = 0
TotalIntactDepStorOnRiverM3 = 0#
TotalIntactDepStorOffRiverM3 = 0#
TotalNonDepAreaOnRiverM2 = 0#
TotalNonDepAreaOffRiverM2 = 0#
TotalOutletOutflowM3 = 0#
NumExtraInflowTables = 0
NumExtraOutflowTables = 0

ModelWshedTable = ""
ModelBaseCaseWShedTable = ""
ModelRiverTable = ""
ModelRegimeTable = ""

StartDate = 0
EndDate = 0

RestorationTransitionDate = #10/1/2002# 'the date at which the restoration
'scenarios take effect

End Sub
Private Sub GetLakes()

'retrieves the lakes table into the LakeTable() array

Dim dbs As DAO.Database
Dim rstLakeList As DAO.Recordset
Dim rstLakeTable As DAO.Recordset
Dim strSQL As String
Dim OutputTableName As String
Dim TableRow As Integer
Dim NumLakes As Long 'The number of lakes in the lakes table

 40

LongestLakeTableSize = 0

Set dbs = CurrentDb

strSQL = "SELECT LakeID, Count(Lakes.LakeID) AS CountOfLakeID FROM Lakes Group BY LakeID
ORDER BY LakeID;"
Set rstLakeList = dbs.OpenRecordset(strSQL)
rstLakeList.MoveLast
NumLakes = rstLakeList.RecordCount
If NumLakes <> rstLakeList![LakeID] Then

MsgBox ("Lakes out of sequence. Start with 1 and number continuously.")
End If
rstLakeList.MoveFirst
If rstLakeList![LakeID] <> 1 Then

MsgBox ("Lakes out of sequence. First Lake must have ID of 1")
End If

Do Until rstLakeList.EOF
LongestLakeTableSize = Max(LongestLakeTableSize, rstLakeList![CountOfLakeID])
rstLakeList.MoveNext

Loop
rstLakeList.MoveFirst

ReDim LakeTable(NumLakes, LongestLakeTableSize + 1) 'dimensions it up to the biggest table
on the list

Do Until rstLakeList.EOF
strSQL = "SELECT * FROM Lakes WHERE ((LakeID) = " & rstLakeList![LakeID] & ") ORDER BY

ID;"
Debug.Print strSQL
Set rstLakeTable = dbs.OpenRecordset(strSQL)
rstLakeTable.MoveFirst
TableRow = 1
Do Until rstLakeTable.EOF

LakeTable(rstLakeTable![LakeID], TableRow).VolumeM3 = rstLakeTable![VolumeM3]
LakeTable(rstLakeTable![LakeID], TableRow).AreaM2 = rstLakeTable![AreaM2]
LakeTable(rstLakeTable![LakeID], TableRow).FlowM3PD = rstLakeTable![FlowM3PD]
TableRow = TableRow + 1
rstLakeTable.MoveNext

Loop
rstLakeTable.Close
rstLakeList.MoveNext

Loop

rstLakeList.Close
dbs.Close

End Sub

Function GetLakeTableRow(LakeID As Integer, VolumeM3 As Double)

Dim Row As Integer

For Row = 1 To LongestLakeTableSize + 1 'Cycles to the upper bound the Rows in LakeTable
If LakeTable(LakeID, Row).VolumeM3 > VolumeM3 Then 'you've passed the row you wanted to

got to
GetLakeTableRow = Max(1, Row - 1)
Exit Function

End If
If Row > 1 And LakeTable(LakeID, Row).VolumeM3 = 0# Then 'you've gone past the end of

the table
GetLakeTableRow = Row - 1
Exit Function

End If

Next

 41

End Function
Private Sub CreateModel_Click()

'Creates a base model for the simulation program based on five
'exported tables from ArcView / HEC-GeoHMS

Dim dbs As DAO.Database
Dim rst As DAO.Recordset
Dim tdf As DAO.TableDef
Dim fld As DAO.Field
Dim qdf As DAO.QueryDef
Dim idx As DAO.Index
Dim fldIndex As DAO.Field
Dim strSQL As String

Dim ImpDepTable As String
Dim ImpPourPointWaterShedTable As String
Dim ImpPourPointLocationTable As String
Dim ImpWaterShedTable As String
Dim ImpRiverTable As String
Dim ImpPrefix As String

MsgBox ("Warning: This will wipe out any existing model for this watershed. Cntrl-Break to
Cancel.")

Set dbs = CurrentDb

ImpPrefix = "IMP_" & txtWaterShed.Value & "_"

'Establishes the names of the 5 imported ArcView tables based on the model
'name and the restoration level
'The 1st table is the depression table, which also has affixed to its
'name the restoration level since the restoration levels affects the depression
'categories (DepType123)
ImpDepTable = ImpPrefix & "DEPTABLE" & "_" & txtRestorationLevel.Value
'The 2nd table is the the pour point watershed theme (which has had all
'depressions intact and drained trimed out of it. It provides information
'regarding the total contributing area of each depression, excluding the depression
'itself and excluding other depressions intact or drained.
ImpPourPointWaterShedTable = ImpPrefix & "PPOINTWSHEDS"
'The 3rd table is from the pour points theme, it gives the pour point locations
'in terms of PolyID by WShid (watershed ID)
ImpPourPointLocationTable = ImpPrefix & "PPOINTLOCATIONS"
'The 4th table is the watershed table from HEC-GeoHMS. It has the WShid
'(watershed ID) field, and the precipitation gage and region assignment for
'each watershed.
ImpWaterShedTable = ImpPrefix & "WSHEDS"
'The 5th table is the river table from HEC-GeoHMS, which gives provides
'sequencing information for the watersheds.
ImpRiverTable = ImpPrefix & "RIVER"

'The following 5 statements delete the temporary tables where the imported
'tables will be copied to.
DeleteTableWithoutWarning ("TEMP_IMP_DEPTABLE")
DeleteTableWithoutWarning ("TEMP_IMP_PPOINTWSHEDS")
DeleteTableWithoutWarning ("TEMP_IMP_PPOINTLOCATIONS")
DeleteTableWithoutWarning ("TEMP_IMP_WSHEDS")
DeleteTableWithoutWarning ("TEMP_IMP_RIVER")

'Puts the depression table for the model into a temporary table
strSQL = "SELECT * INTO TEMP_IMP_DEPTABLE FROM " & ImpDepTable & ";"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute
dbs.TableDefs.Refresh

'Puts the pour points watersheds table into a temporary table.
strSQL = "SELECT * INTO TEMP_IMP_PPOINTWSHEDS FROM " & ImpPourPointWaterShedTable & ";"

 42

Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute
dbs.TableDefs.Refresh

'Puts the pour point locations into a temporary table.
strSQL = "SELECT * INTO TEMP_IMP_PPOINTLOCATIONS FROM " & ImpPourPointLocationTable & ";"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute
dbs.TableDefs.Refresh

'Puts the model's imported watersheds into a temporary table.
strSQL = "SELECT * INTO TEMP_IMP_WSHEDS FROM " & ImpWaterShedTable & ";"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute
dbs.TableDefs.Refresh

'Puts the model's river table into a temporary table
strSQL = "SELECT * INTO TEMP_IMP_RIVER FROM " & ImpRiverTable & ";"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute
dbs.TableDefs.Refresh

Call SetModelTableNames 'sets all the table names for the model
'e.g. those beginning with "MODEL_"

'Deletes the model's watershed table if it already exists
DeleteTableWithWarning (ModelWshedTable)

'The following deletes the model River table and Regime Table if is the
'original setup (e.g. restoration level "A") of the model.
If txtRestorationLevel.Value = "A" Then

DeleteTableWithWarning (ModelRiverTable)
DeleteTableWithWarning (ModelRegimeTable)

End If

'The following, until "dbs.TableDefs.Refresh," creates the model
'watershed table
Set tdf = dbs.CreateTableDef(ModelWshedTable)
Set fld = tdf.CreateField("SubBSeq", dbLong)
tdf.Fields.Append fld
Set fld = tdf.CreateField("WShid", dbLong)
tdf.Fields.Append fld
Set fld = tdf.CreateField("DSSubBSeq", dbLong)
tdf.Fields.Append fld
Set fld = tdf.CreateField("PrecipGage", dbText, 12)
tdf.Fields.Append fld
Set fld = tdf.CreateField("Region", dbLong)
tdf.Fields.Append fld
Set fld = tdf.CreateField("InitWaterM3", dbSingle)
tdf.Fields.Append fld
Set fld = tdf.CreateField("InputStreamTable", dbText, 12)
tdf.Fields.Append fld
Set fld = tdf.CreateField("LakeID", dbInteger)
tdf.Fields.Append fld
Set fld = tdf.CreateField("ExtraInflowID", dbText, 12)
tdf.Fields.Append fld
Set fld = tdf.CreateField("ExtraOutflowID", dbText, 12)
tdf.Fields.Append fld
Set fld = tdf.CreateField("WSAreaM2NonDep", dbSingle)
tdf.Fields.Append fld
Set fld = tdf.CreateField("DepVolM3", dbSingle)
tdf.Fields.Append fld
Set fld = tdf.CreateField("DepAreaM2", dbSingle)
tdf.Fields.Append fld
Set fld = tdf.CreateField("WSAreaNonDepOnRiverM2", dbSingle)
tdf.Fields.Append fld
Set fld = tdf.CreateField("DepVolOnRiverM3", dbSingle)

 43

tdf.Fields.Append fld
Set fld = tdf.CreateField("DepAreaOnRiverM2", dbSingle)
tdf.Fields.Append fld
Set fld = tdf.CreateField("WSAreaNonDepOffRiverM2", dbSingle)
tdf.Fields.Append fld
Set fld = tdf.CreateField("DepVolOffRiverM3", dbSingle)
tdf.Fields.Append fld
Set fld = tdf.CreateField("DepAreaOffRiverM2", dbSingle)
tdf.Fields.Append fld
Set fld = tdf.CreateField("NumDeps", dbLong)
tdf.Fields.Append fld
Set fld = tdf.CreateField("NumDepsOnRiver", dbLong)
tdf.Fields.Append fld
Set fld = tdf.CreateField("NumDepsOffRiver", dbLong)
tdf.Fields.Append fld
Set idx = tdf.CreateIndex("PrimaryKey")
Set fldIndex = idx.CreateField("SubBSeq", dbLong)
idx.Fields.Append fldIndex
idx.Primary = True
tdf.Indexes.Append idx
dbs.TableDefs.Append tdf
dbs.TableDefs.Refresh

If txtRestorationLevel.Value = "A" Then ' Creates regime and river tables
'for the original model setup e,g. restoration level "A"

DeleteTableWithoutWarning ("RIVER") 'deletes the temporaty RIVER table

' Copies the model's Imported River table in RIVER
strSQL = "SELECT * INTO RIVER FROM " & ImpRiverTable & ";"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute
dbs.TableDefs.Refresh

Set tdf = dbs.TableDefs("RIVER")

'Adds several fields to the River table
'The Layer field is the distance in river links from the outlet
'The SubBSeq is the sequencing that will be used for the watershed
'table.
'DSSubBSeq is the downstream subbasin sequence number
'DistFromOutM is not used at this time
Set fld = tdf.CreateField("Layer", dbLong)
tdf.Fields.Append fld
Set fld = tdf.CreateField("SubBSeq", dbLong)
tdf.Fields.Append fld
Set fld = tdf.CreateField("DSSubBSeq", dbLong)
tdf.Fields.Append fld
Set fld = tdf.CreateField("DistFromOutM", dbDouble)
tdf.Fields.Append fld
dbs.TableDefs.Refresh

'The following function takes the to and from nodes in the
'RIVER table and assigns values to Layer, SubBSeq, and DSSubSeq
'Such that all the segements are sequenced properly, and so that
'and watershed with a certain SubBSeq number is guaranteed not to
'be downstream of any watershed with a higher SubBSeq. That is, the
'lower SubBSeq numbers correspond to the most upstream watersheds
Call SequenceRiver_Click

' Takes the date from the RIVER table and copies it into the
'model's river table.
strSQL = "SELECT * INTO " & ModelRiverTable & " FROM RIVER;"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute
dbs.TableDefs.Refresh

 44

'Creates a default regime table for the model using the table
'RegimesTemplate as a source
strSQL = "SELECT * INTO " & ModelRegimeTable & " FROM RegimesTemplate;"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute
dbs.TableDefs.Refresh

End If

'Creates the watersheds for the watersheds table using the sequencing
'information previously calculated which is now in the model river table
'This query fills the SubBSeq and DSSubBSeq fields only
strSQL = "INSERT INTO " & ModelWshedTable & " (SubBSeq, DSSubBSeq) " & _

"SELECT SubBSeq, DSSubBSeq FROM " & ModelRiverTable & ";"
Set qdf = dbs.CreateQueryDef("", strSQL)
Debug.Print strSQL
dbs.QueryDefs.Refresh
qdf.Execute

'Updates the WShid of the model watershed table based on the SubBSeq / Wshid
'relationship which appears in the model river table.
strSQL = "UPDATE " & ModelWshedTable & " INNER JOIN " & ModelRiverTable & _

" ON " & ModelWshedTable & ".SubBSeq = " & ModelRiverTable & ".SubBSeq SET " & _
ModelWshedTable & ".WShid = " & ModelRiverTable & ".[WShid];"

Set qdf = dbs.CreateQueryDef("", strSQL)
dbs.QueryDefs.Refresh
qdf.Execute

'Deletes the temporary watershed table
DeleteTableWithoutWarning ("TEMP_MODEL_WSHEDS")
'Creates a temporary watershed table using the information currently in
'the model's watershed table: the SubBSeq, DSSubBSeq, and WShid, as well
'as numerous other fields with no data
strSQL = "SELECT * INTO TEMP_MODEL_WSHEDS FROM " & ModelWshedTable & ";"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute
dbs.TableDefs.Refresh

' Finds the areas of Non Type 1 depressions in the watershed
DeleteQueryWithoutWarning ("TempQNonType1Area")
strSQL = "SELECT TEMP_MODEL_WSHEDS.SubBSeq, Sum(TEMP_IMP_DEPTABLE.AREA_M2) AS SumOfAREA_M2
" & _

"FROM (TEMP_MODEL_WSHEDS INNER JOIN TEMP_IMP_PPOINTLOCATIONS ON
TEMP_MODEL_WSHEDS.WShid = TEMP_IMP_PPOINTLOCATIONS.WSHID) INNER JOIN TEMP_IMP_DEPTABLE ON
TEMP_IMP_PPOINTLOCATIONS.POLYID = TEMP_IMP_DEPTABLE.POLYID " & _

"GROUP BY TEMP_MODEL_WSHEDS.SubBSeq, TEMP_IMP_DEPTABLE.DEPTYPE123 " & _
"HAVING (((TEMP_IMP_DEPTABLE.DEPTYPE123)<>1));"

Set qdf = dbs.CreateQueryDef("TempQNonType1Area", strSQL)
dbs.QueryDefs.Refresh

' Finds Soil (contributing) each watershed
DeleteQueryWithoutWarning ("TempQSoilAreas")
strSQL = "SELECT TEMP_MODEL_WSHEDS.SubBSeq, Sum(TEMP_IMP_PPOINTWSHEDS.AREA_M2) AS
SoilAreaM2 " & _

"FROM (TEMP_IMP_PPOINTWSHEDS INNER JOIN TEMP_IMP_PPOINTLOCATIONS ON
TEMP_IMP_PPOINTWSHEDS.POLYID = TEMP_IMP_PPOINTLOCATIONS.POLYID) INNER JOIN
TEMP_MODEL_WSHEDS ON TEMP_IMP_PPOINTLOCATIONS.WSHID = TEMP_MODEL_WSHEDS.WShid " & _

"GROUP BY TEMP_MODEL_WSHEDS.SubBSeq;"
Set qdf = dbs.CreateQueryDef("TempQSoilAreas", strSQL)
dbs.QueryDefs.Refresh

' Unions the Contributing areas (soils) with the Non Type 1 depressions to create total
contributing area
DeleteQueryWithoutWarning ("TempQUnionNonType1Area")
strSQL = "SELECT ALL * FROM TempQSoilAreas UNION ALL SELECT ALL * FROM TempQNonType1Area;"
Set qdf = dbs.CreateQueryDef("TempQUnionNonType1Area", strSQL)
dbs.QueryDefs.Refresh

 45

' Writes out the total contributing area to a Sub Basin
DeleteTableWithoutWarning ("TEMP_TOTALNONTYPE1AREA")
strSQL = "SELECT SubBSeq, Sum(SoilAreaM2) AS SumOfSoilAreaM2 INTO TEMP_TOTALNONTYPE1AREA "
& _

"FROM TempQUnionNonType1Area " & _
"GROUP BY SubBSeq " & _
"ORDER BY SubBSeq;"

Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute
dbs.TableDefs.Refresh

' Creates a query that determines the Soil contributing areas, classified by INTERRIV =
True or False
DeleteQueryWithoutWarning ("TempQSoilAreasByInterRiv")
strSQL = "SELECT TEMP_MODEL_WSHEDS.SubBSeq, Sum(TEMP_IMP_PPOINTWSHEDS.AREA_M2) AS
SoilAreaM2, TEMP_IMP_DEPTABLE.INTERRIV " & _

"FROM ((TEMP_IMP_PPOINTWSHEDS INNER JOIN TEMP_IMP_PPOINTLOCATIONS ON
TEMP_IMP_PPOINTWSHEDS.POLYID = TEMP_IMP_PPOINTLOCATIONS.POLYID) INNER JOIN
TEMP_MODEL_WSHEDS ON TEMP_IMP_PPOINTLOCATIONS.WSHID = TEMP_MODEL_WSHEDS.WShid) INNER JOIN
TEMP_IMP_DEPTABLE ON TEMP_IMP_PPOINTWSHEDS.POLYID = TEMP_IMP_DEPTABLE.POLYID " & _

"GROUP BY TEMP_MODEL_WSHEDS.SubBSeq, TEMP_IMP_DEPTABLE.INTERRIV;"
Set qdf = dbs.CreateQueryDef("TempQSoilAreasByInterRiv", strSQL)
dbs.QueryDefs.Refresh

' Creates a query that determines the non-Type 1 depressional contributing area, classified
by River intersection or not
DeleteQueryWithoutWarning ("TempQNonType1AreaByInterRiv")
strSQL = "SELECT TEMP_MODEL_WSHEDS.SubBSeq, Sum(TEMP_IMP_DEPTABLE.AREA_M2) AS SumOfAREA_M2,
TEMP_IMP_DEPTABLE.INTERRIV " & _

"FROM (TEMP_MODEL_WSHEDS INNER JOIN TEMP_IMP_PPOINTLOCATIONS ON
TEMP_MODEL_WSHEDS.WShid = TEMP_IMP_PPOINTLOCATIONS.WSHID) INNER JOIN TEMP_IMP_DEPTABLE ON
TEMP_IMP_PPOINTLOCATIONS.POLYID = TEMP_IMP_DEPTABLE.POLYID " & _

"GROUP BY TEMP_MODEL_WSHEDS.SubBSeq, TEMP_IMP_DEPTABLE.INTERRIV,
TEMP_IMP_DEPTABLE.DEPTYPE123 " & _

"HAVING (((TEMP_IMP_DEPTABLE.DEPTYPE123)<>1));"
Set qdf = dbs.CreateQueryDef("TempQNonType1AreaByInterRiv", strSQL)
dbs.QueryDefs.Refresh

'Creates a query that determines the outlet contributing area, this together with previous
2
'queries are unioned in the query following this one
DeleteQueryWithoutWarning ("TempQOutletByInterRiv")
strSQL = "SELECT TEMP_MODEL_WSHEDS.SubBSeq, TEMP_IMP_PPOINTWSHEDS.AREA_M2, True AS INTERRIV
" & _

"FROM TEMP_MODEL_WSHEDS, TEMP_IMP_PPOINTWSHEDS " & _
"WHERE (((TEMP_MODEL_WSHEDS.DSSubBSeq)=0) AND ((TEMP_IMP_PPOINTWSHEDS.POLYID)=0));"

Set qdf = dbs.CreateQueryDef("TempQOutletByInterRiv", strSQL)
dbs.QueryDefs.Refresh

' Creates a query that Unions the Contributing areas (soils) with the Non Type 1
depressions to create total contributing area
' They are classified by River intersection (INTERRIV = True Or False)
DeleteQueryWithoutWarning ("TempQUnionNonType1AreaByInterRiv")
strSQL = "SELECT ALL * FROM TempQSoilAreasByInterRiv UNION ALL SELECT ALL * FROM
TempQNonType1AreaByInterRiv UNION ALL SELECT ALL * FROM TempQOutletByInterRiv;"
Set qdf = dbs.CreateQueryDef("TempQUnionNonType1AreaByInterRiv", strSQL)
dbs.QueryDefs.Refresh

'Deletes a temporary table before creating a new version
DeleteTableWithoutWarning ("TEMP_TOTALNONTYPE1AREA_INTERRIV")
'Creates a table that gives total contributing areas to each watershed classified by River
Intersection of Depressions
strSQL = "SELECT SubBSeq, Sum(SoilAreaM2) AS SumOfSoilAreaM2, INTERRIV INTO
TEMP_TOTALNONTYPE1AREA_INTERRIV " & _

"FROM TempQUnionNonType1AreaByInterRiv " & _
"GROUP BY SubBSeq, INTERRIV " & _

 46

"ORDER BY SubBSeq;"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute

'Updates the temporary watershed table with the non-type 1 areas
strSQL = "UPDATE TEMP_TOTALNONTYPE1AREA INNER JOIN TEMP_MODEL_WSHEDS ON
TEMP_TOTALNONTYPE1AREA.SubBSeq = TEMP_MODEL_WSHEDS.SubBSeq SET
TEMP_MODEL_WSHEDS.WSAreaM2NonDep = [SumOfSoilAreaM2];"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute

'Deletes a temporary table before creating a new version
DeleteTableWithoutWarning ("TEMP_INTACTAREASVOLUMES")
'Creates a table which has the volumes and areas of all intact depressions
strSQL = "SELECT TEMP_MODEL_WSHEDS.SubBSeq, Sum(TEMP_IMP_DEPTABLE.AREA_M2) AS SumOfAREA_M2,
Sum(TEMP_IMP_DEPTABLE.VOLM3) AS SumOfVOLM3, Count(TEMP_IMP_DEPTABLE.POLYID) AS
CountOfPOLYID INTO TEMP_INTACTAREASVOLUMES " & _

"FROM (TEMP_IMP_DEPTABLE INNER JOIN TEMP_IMP_PPOINTLOCATIONS ON
TEMP_IMP_DEPTABLE.POLYID = TEMP_IMP_PPOINTLOCATIONS.POLYID) INNER JOIN TEMP_MODEL_WSHEDS ON
TEMP_IMP_PPOINTLOCATIONS.WSHID = TEMP_MODEL_WSHEDS.WShid " & _

"GROUP BY TEMP_MODEL_WSHEDS.SubBSeq, TEMP_IMP_DEPTABLE.DEPTYPE123 " & _
"HAVING (((TEMP_IMP_DEPTABLE.DEPTYPE123)=1));"

Set qdf = dbs.CreateQueryDef("", strSQL)
Debug.Print strSQL
qdf.Execute
dbs.TableDefs.Refresh

'Updates the temporary watersheds table with the depressional areas and
'volumes contained in TEMP_INTACTAREASVOLUMES
strSQL = "UPDATE TEMP_INTACTAREASVOLUMES INNER JOIN TEMP_MODEL_WSHEDS ON
TEMP_INTACTAREASVOLUMES.SubBSeq = TEMP_MODEL_WSHEDS.SubBSeq SET TEMP_MODEL_WSHEDS.DepVolM3
= [SumOfVOLM3], TEMP_MODEL_WSHEDS.DepAreaM2 = [SumOfAREA_M2], TEMP_MODEL_WSHEDS.NumDeps =
[CountOfPOLYID];"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute

' Creates table with depressional volumes and areas on the river
DeleteTableWithoutWarning ("TEMP_INTACTAREASVOLUMES_ONRIVER")
strSQL = "SELECT TEMP_MODEL_WSHEDS.SubBSeq, Sum(TEMP_IMP_DEPTABLE.AREA_M2) AS SumOfAREA_M2,
Sum(TEMP_IMP_DEPTABLE.VOLM3) AS SumOfVOLM3, Count(TEMP_IMP_DEPTABLE.POLYID) AS
CountOfPOLYID INTO TEMP_INTACTAREASVOLUMES_ONRIVER " & _

"FROM (TEMP_IMP_DEPTABLE INNER JOIN TEMP_IMP_PPOINTLOCATIONS ON
TEMP_IMP_DEPTABLE.POLYID = TEMP_IMP_PPOINTLOCATIONS.POLYID) INNER JOIN TEMP_MODEL_WSHEDS ON
TEMP_IMP_PPOINTLOCATIONS.WSHID = TEMP_MODEL_WSHEDS.WShid " & _

"GROUP BY TEMP_MODEL_WSHEDS.SubBSeq, TEMP_IMP_DEPTABLE.DEPTYPE123,
TEMP_IMP_DEPTABLE.INTERRIV " & _

"HAVING (((TEMP_IMP_DEPTABLE.DEPTYPE123)=1) AND
((TEMP_IMP_DEPTABLE.INTERRIV)=True));"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute

' Creates table with depressional volumes and areas off the river
DeleteTableWithoutWarning ("TEMP_INTACTAREASVOLUMES_OFFRIVER")
strSQL = "SELECT TEMP_MODEL_WSHEDS.SubBSeq, Sum(TEMP_IMP_DEPTABLE.AREA_M2) AS SumOfAREA_M2,
Sum(TEMP_IMP_DEPTABLE.VOLM3) AS SumOfVOLM3, Count(TEMP_IMP_DEPTABLE.POLYID) AS
CountOfPOLYID INTO TEMP_INTACTAREASVOLUMES_OFFRIVER " & _

"FROM (TEMP_IMP_DEPTABLE INNER JOIN TEMP_IMP_PPOINTLOCATIONS ON
TEMP_IMP_DEPTABLE.POLYID = TEMP_IMP_PPOINTLOCATIONS.POLYID) INNER JOIN TEMP_MODEL_WSHEDS ON
TEMP_IMP_PPOINTLOCATIONS.WSHID = TEMP_MODEL_WSHEDS.WShid " & _

"GROUP BY TEMP_MODEL_WSHEDS.SubBSeq, TEMP_IMP_DEPTABLE.DEPTYPE123,
TEMP_IMP_DEPTABLE.INTERRIV " & _

"HAVING (((TEMP_IMP_DEPTABLE.DEPTYPE123)=1) AND
((TEMP_IMP_DEPTABLE.INTERRIV)=False));"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute

 47

' Updates the temporary Watershed table with the contributing areas for depressions on the
River
strSQL = "UPDATE TEMP_TOTALNONTYPE1AREA_INTERRIV INNER JOIN TEMP_MODEL_WSHEDS ON
TEMP_TOTALNONTYPE1AREA_INTERRIV.SubBSeq = TEMP_MODEL_WSHEDS.SubBSeq SET
TEMP_MODEL_WSHEDS.WSAreaNonDepOnRiverM2 = [SumOfSoilAreaM2] " & _

"WHERE (((TEMP_TOTALNONTYPE1AREA_INTERRIV.INTERRIV)=True));"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute

' Updates the temporary Watershed table with the contributing areas for depressions off the
River
strSQL = "UPDATE TEMP_TOTALNONTYPE1AREA_INTERRIV INNER JOIN TEMP_MODEL_WSHEDS ON
TEMP_TOTALNONTYPE1AREA_INTERRIV.SubBSeq = TEMP_MODEL_WSHEDS.SubBSeq SET
TEMP_MODEL_WSHEDS.WSAreaNonDepOffRiverM2 = [SumOfSoilAreaM2] " & _

"WHERE (((TEMP_TOTALNONTYPE1AREA_INTERRIV.INTERRIV)=False));"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute

'Update the temporary watershed table with the On River depressional volumes and areas
strSQL = "UPDATE TEMP_INTACTAREASVOLUMES_ONRIVER INNER JOIN TEMP_MODEL_WSHEDS ON
TEMP_INTACTAREASVOLUMES_ONRIVER.SubBSeq = TEMP_MODEL_WSHEDS.SubBSeq SET
TEMP_MODEL_WSHEDS.DepVolOnRiverM3 = [SumOfVOLM3], TEMP_MODEL_WSHEDS.DepAreaOnRiverM2 =
[SumOfAREA_M2], TEMP_MODEL_WSHEDS.NumDepsOnRiver = [CountOfPolyID];"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute

'Update the temporary watershed table with the Off River depressional volumes and areas
strSQL = "UPDATE TEMP_MODEL_WSHEDS INNER JOIN TEMP_INTACTAREASVOLUMES_OFFRIVER ON
TEMP_MODEL_WSHEDS.SubBSeq = TEMP_INTACTAREASVOLUMES_OFFRIVER.SubBSeq SET
TEMP_MODEL_WSHEDS.DepVolOffRiverM3 = [SumOfVOLM3], TEMP_MODEL_WSHEDS.DepAreaOffRiverM2 =
[SumOfAREA_M2], TEMP_MODEL_WSHEDS.NumDepsOffRiver = [CountOfPolyID];"
Set qdf = dbs.CreateQueryDef("", strSQL)
Debug.Print strSQL
qdf.Execute

'updates the Gage Names and Regions in the Temporary WSHEDS table
strSQL = "UPDATE TEMP_IMP_WSHEDS INNER JOIN TEMP_MODEL_WSHEDS ON TEMP_IMP_WSHEDS.WSHID =
TEMP_MODEL_WSHEDS.WShid SET TEMP_MODEL_WSHEDS.PrecipGage = [TEMP_IMP_WSHEDS].[PrecipGage],
TEMP_MODEL_WSHEDS.Region = [TEMP_IMP_WSHEDS].[Region];"
Set qdf = dbs.CreateQueryDef("", strSQL)
Debug.Print strSQL
qdf.Execute

'Updates the WSheds Table for this model
strSQL = "UPDATE TEMP_MODEL_WSHEDS INNER JOIN " & ModelWshedTable & " AS MW ON
TEMP_MODEL_WSHEDS.SubBSeq = MW.SubBSeq SET MW.PrecipGage =
[TEMP_MODEL_WSHEDS].[PrecipGage], MW.WSAreaM2NonDep = [TEMP_MODEL_WSHEDS].[WSAreaM2NonDep],
MW.DepVolM3 = [TEMP_MODEL_WSHEDS].[DepVolM3], MW.DepAreaM2 =
[TEMP_MODEL_WSHEDS].[DepAreaM2], MW.WSAreaNonDepOnRiverM2 =
[TEMP_MODEL_WSHEDS].[WSAreaNonDepOnRiverM2], MW.DepVolOnRiverM3 =
[TEMP_MODEL_WSHEDS].[DepVolOnRiverM3], MW.DepAreaOnRiverM2 =
[TEMP_MODEL_WSHEDS].[DepAreaOnRiverM2], MW.WSAreaNonDepOffRiverM2 =
[TEMP_MODEL_WSHEDS].[WSAreaNonDepOffRiverM2], MW.DepVolOffRiverM3 =
[TEMP_MODEL_WSHEDS].[DepVolOffRiverM3], MW.DepAreaOffRiverM2 =
[TEMP_MODEL_WSHEDS].[DepAreaOffRiverM2], MW.NumDeps = [TEMP_MODEL_WSHEDS].[NumDeps],
MW.NumDepsOnRiver = [TEMP_MODEL_WSHEDS].[NumDepsOnRiver], MW.NumDepsOffRiver =
[TEMP_MODEL_WSHEDS].[NumDepsOffRiver];"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute

'Updates the Wsheds table regions for this model
strSQL = "UPDATE TEMP_MODEL_WSHEDS INNER JOIN " & ModelWshedTable & " AS MW ON
TEMP_MODEL_WSHEDS.SubBSeq = MW.SubBSeq SET MW.Region = [TEMP_MODEL_WSHEDS].[Region];"
Set qdf = dbs.CreateQueryDef("", strSQL)
Debug.Print strSQL
qdf.Execute

 48

'Opens the model watershed table
strSQL = "SELECT * FROM " & ModelWshedTable & ";"
Set rst = dbs.OpenRecordset(strSQL)
rst.MoveFirst

With rst 'searches for null values in various fields of the watershed
'table and replaces them with zeros.

Do Until .EOF
.Edit
If IsNull(![DepVolM3]) Then

![DepVolM3] = 0#
End If
If IsNull(![DepAreaM2]) Then

![DepAreaM2] = 0#
End If
If IsNull(![NumDeps]) Then

![NumDeps] = 0
End If
If IsNull(![WSAreaM2NonDep]) Then

![WSAreaM2NonDep] = 0#
End If
If IsNull(![DepVolOnRiverM3]) Then

![DepVolOnRiverM3] = 0#
End If
If IsNull(![DepAreaOnRiverM2]) Then

![DepAreaOnRiverM2] = 0#
End If
If IsNull(![NumDepsOnRiver]) Then

![NumDepsOnRiver] = 0
End If
If IsNull(![DepVolOffRiverM3]) Then

![DepVolOffRiverM3] = 0#
End If
If IsNull(![DepAreaOffRiverM2]) Then

![DepAreaOffRiverM2] = 0#
End If
If IsNull(![NumDepsOffRiver]) Then

![NumDepsOffRiver] = 0
End If
If IsNull(![WSAreaNonDepOnRiverM2]) Then

![WSAreaNonDepOnRiverM2] = 0#
End If
If IsNull(![WSAreaNonDepOffRiverM2]) Then

![WSAreaNonDepOffRiverM2] = 0#
End If
If (IsNull(![Region])) Then 'sets Region = 1 if it was not set

'previously
![Region] = 1

End If
![InitWaterM3] = 0#
.Update
.MoveNext

Loop
End With

rst.Close
dbs.Close

MsgBox ("Done Creating Model From ArcView Tables")

End Sub

Sub DeleteTableWithWarning(TableName As String)
'Deletes a table without providing a warning

If DoesObjectExist("Tables", TableName) <> "" Then
MsgBox ("Warning: The table " & TableName & " Will be Deleted. Cntrl-Break to Cancel")

 49

DoCmd.DeleteObject acTable, TableName
End If

End Sub

Sub DeleteQueryWithoutWarning(QueryName As String)
'Deletes a query without providing a warning

If DoesObjectExist("Queries", QueryName) <> "" Then
DoCmd.DeleteObject acQuery, QueryName

End If

End Sub
Sub DeleteTableWithoutWarning(TableName As String)

'Deletes a table after providing a warning

If DoesObjectExist("Tables", TableName) <> "" Then
DoCmd.DeleteObject acTable, TableName

End If

End Sub

Private Sub SequenceRiver_Click()
'sequences the RIVER table from upstream to downstream
'and provides the subbasin sequencing numbers (SubBSeq)
'that insure that no subbasin downstream of another subbasin
'will have a lower SubBSeq

Dim dbs As DAO.Database
Dim rst As DAO.Recordset
Dim rstUpdate As DAO.Recordset
Dim qdf As DAO.QueryDef
Dim I As Long, Count As Long
Dim strSQL As String, strSQLUpdate As String
Dim OutletNode As Long
Dim CurrentLayer As Long, NumberOfLayers As Long, OldLayer As Long

StatusBox.Value = "Sequencing the RIVER table"
Me.Refresh

Set dbs = CurrentDb

'Clear the River.Layer, River.SubBSeq, and River.DSSubBSeq fields
strSQL = "UPDATE River SET River.Layer = Null, River.SubBSeq = Null, River.DSSubBSeq =
Null;"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute

'A query to find all River segments whose TO_NODE have no
'corresponding FROM_NODE in another River segement
'the record selected should be the outlet
strSQL = "SELECT River.[TO_NODE], River_1.[FROM_NODE] " & _

"FROM River LEFT JOIN River AS River_1 ON River.[TO_NODE] = River_1.[FROM_NODE] " & _
"WHERE (((River_1.[FROM_NODE]) Is Null));"

Set rst = dbs.OpenRecordset(strSQL)

rst.MoveLast
Count = rst.RecordCount 'hown many records were returned
OutletNode = rst![TO_NODE] 'This is the node number of the outlet
rst.Close

If Count <> 1 Then 'there should have been only one outlet returned
MsgBox ("The outlet count was not 1 but: " & Count)
Exit Sub

End If

 50

'A query which finds the river segment whose TO_NODE is the outlet
'node; that is, this query returns the most downstream river segment
strSQL = "SELECT * FROM River WHERE (((TO_NODE)=" & OutletNode & "));"
Set rst = dbs.OpenRecordset(strSQL)

'Sets [Layer] equal to 1 for the the most downstream river segement
rst.Edit
rst![Layer] = 1
rst.Update
rst.Close

CurrentLayer = 1 'sets the intial layer to be 1'; this will cause the
'following Do loop to select the outlet subbasin in it's first loop

Do 'This creates the Layer values, where Layer is the number of
'subbasins away from the outlet; the most downstream subbasin
'was already set to have a Layer value of 1
StatusBox.Value = "Sequencing the RIVER table -- Layer = " & CurrentLayer
Me.Refresh

'extracts all subbasins in the current Layer
strSQL = "SELECT River_1.* FROM River AS River_1 " & _

"INNER JOIN River ON River_1.TO_NODE = River.FROM_NODE " & _
"WHERE (((River.Layer)=" & CurrentLayer & "));"

Set rst = dbs.OpenRecordset(strSQL)

'If there are no further records quit the Do loop
If rst.EOF Then

rst.Close
Exit Do

End If

rst.MoveFirst 'moves to the first subbasin extracted
Do Until rst.EOF 'extracts all subbasins upstream of the current subbasin

strSQLUpdate = "SELECT * FROM RIVER WHERE (((RIVID)=" & rst![RIVID] & "));"
Set rstUpdate = dbs.OpenRecordset(strSQLUpdate)
rstUpdate.Edit
rstUpdate![Layer] = CurrentLayer + 1 'sets their layer value one higher
rstUpdate.Update
rstUpdate.Close
rst.MoveNext

Loop

rst.Close
CurrentLayer = CurrentLayer + 1 'increments the current layer

Loop

'Find the maximum Layer number
strSQL = "SELECT Max(River.Layer) AS MaxOfLayer FROM River;"
Set rst = dbs.OpenRecordset(strSQL)
rst.MoveFirst
NumberOfLayers = rst![MaxOfLayer]
rst.Close

'Assign the SubBasin Sequence numbers SubBSeq
'extracts the RIVER records sorted in reverse (DESC) order
'of the layer number so that the most upstream subbasins
'appear first
strSQL = "SELECT * FROM River ORDER BY Layer DESC, RIVID;"
Set rst = dbs.OpenRecordset(strSQL)
rst.MoveFirst
I = 1
Do Until rst.EOF

rst.Edit
rst![SubBSeq] = I
rst.Update

 51

rst.MoveNext
I = I + 1

Loop
rst.Close

'Assign the DownStream SubBasin Sequence number DSSubBSeq
'based on the node numbers
strSQL = "UPDATE River INNER JOIN River AS River_1 " & _

"ON River.FROM_NODE = River_1.TO_NODE SET River_1.DSSubBSeq = [River].[SubBSeq];"
Set qdf = dbs.CreateQueryDef("", strSQL)
qdf.Execute

' Set the most downstream subbasin to have DSSubBSeq = 0
strSQL = "SELECT * FROM RIVER WHERE ([DSSubBSeq] Is Null)"
Set rst = dbs.OpenRecordset(strSQL)
rst.MoveFirst
rst.Edit
rst![DSSubBSeq] = 0
rst.Update
rst.Close

dbs.Close

End Sub

Sub SetModelTableNames()
'Establishes the name of all input tables for the model
'based on the watershed name, restoration level, and simulation to
'be run.

Dim ModelPrefix As String

ModelPrefix = "MODEL_" & txtWaterShed.Value & "_"

ModelWshedTable = ModelPrefix & txtRestorationLevel.Value & "_" & "WSHEDS"
ModelBaseCaseWShedTable = ModelPrefix & "A_" & "WSHEDS"
ModelRiverTable = ModelPrefix & "RIVER"
ModelRegimeTable = ModelPrefix & "REGIMES"

End Sub

Private Function IsField(td As TableDef, ByVal FieldName As String) _
As Boolean

' Returns TRUE if a field exists in the table with the same name as
' specified in FieldName.
' Returns FALSE otherwise.

Dim F As Field
Err.Clear
On Error Resume Next
Set F = td(FieldName)
If Err.Number = 13 Then

IsField = True
Else

IsField = False
End If

Err.Clear
End Function

